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Abstract

We perform a test of local realism using polarization-entangled photons from a spon-
taneous parametric down-conversion source. This test was designed by Mark Beck of
Whitman College, and is based on the theoretical work of Lucien Hardy. We find local
realism to be violated by more than 60 uncertainties. This experiment is relatively
inexpensive, and can be performed by interested undergraduates.





Introduction

Cette harmonie que l’intelligence humaine croit découvrir dans la nature,
existe-t-elle en dehors de cette intelligence? Non, sans doute, une réalité
complètement indépendante de l’esprit qui la conçoit, la voit ou la sent,
cest une impossibilité.

Does the harmony the human intelligence thinks it discovers in nature
exist outside of this intelligence? No, beyond doubt, a reality completely
independent of the mind which conceives it, sees or feels it, is an impos-
sibility.

Henri Poincaré1

There is no quantum world. There is only an abstract physical description.
It is wrong to think that the task of physics is to find out how nature is.
Physics concerns what we can say about nature.

Niels Bohr2

As quantum mechanics came of age in the early 20th century, scientists struggled to
understand what lay behind their new theory of the microscopic world. The strikingly
non-classical features of the new physical theory challenged the intuition of many, but
the theory’s unambiguous agreement with experiment solidified its position against
attempts at philosophical debasement. The new era of quantum physics had begun.

For many decades, certain epistemological questions about quantum physics were
not testable, and thus not considered within the scope of physics to answer. However,
in 1964, a young Irish physicist named John Bell devised an approach which would,
in principle, unambiguously test the empirical validity of local realism, a tenet of the
classical conception of the physical world. Although it would be almost two decades
before this test was experimentally realized, the results were found to be in clear
violation of local realism. The once-philosophical debate had now been settled.

Twenty five years after the first experimental test of local realism, we are now able
to carry out such tests in a modest undergraduate laboratory. Although we break
no new ground in doing so, experimentally verifying this striking feature of quantum
theory is an invaluable tool in coming to understand this theory of the microscopic
world.

1Poincaré [1958].
2Quoted in Baggott [1992].





Chapter 1

Historical Background

1.1 The Meaning of Physical Theory

What is a physical theory? One possible response is that a physical theory is a quan-
titative description of the natural world, formulated in the language of mathematics.
For Newtonian physics, it is fairly straightforward to assign a readily understandable
physical meaning to most of the mathematical objects involved in the theory,1 but
what do we say when our mathematical apparatus seems to go beyond the reach
our physical understanding? What does our physical theory “mean” in this case?
Physicists and philosophers alike wrestled with these questions.2

Logical Positivism and the Vienna Circle

In considering the function of physical theory, a natural starting point is the work
of the Vienna Circle,3 a group of philosophers who gathered in Vienna in the early
1920s and would exert far-reaching influence on the philosophy of science. This group
worked to give a clear definition of what was and was not scientific, in order to sepa-
rate the physical from the metaphysical. They claimed that the only true knowledge
is scientific knowledge, which is knowledge formulated in logical statements which are
empirically verifiable (Achinstein and Barker [1969]).

1A notable exception is the concept of energy. I think Feynman said it best:

There is a fact, or if you wish, a law, governing natural phenomena that are known
to date. There is no known exception to this law; it is exact, so far we know. The
law is called conservation of energy; it states that there is a certain quantity, which we
call energy, that does not change in manifold changes which nature undergoes. That
is a most abstract idea, because it is a mathematical principle; it says that there is
a numerical quantity, which does not change when something happens. It is not a
description of a mechanism, or anything concrete; it is just a strange fact that we can
calculate some number, and when we finish watching nature go through her tricks and
calculate the number again, it is the same.

from Feynman [1964].
2And of course, the two vocations are far from mutually exclusive.
3The Vienna Circle included such notable members as Moritz Schlick, Rudolf Carnap, and Otto

Neurath, among others.
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Let us consider an example. The statement “When a tree falls in the woods, and
no one is there to hear it, it does indeed make a sound” would not be considered a
scientific statement by the logical positivists, as there is no conceivable way to verify
it;4 the statement is about the unobservable world, and therefore does not consti-
tute knowledge. Similarly, a statement such as “this universe is just one of many
universes” would not be scientific unless one could find a way to verify it through
observation of our own universe. Through this criterion, the positivists sought to
categorize the metaphysical as “not only false, but empty and cognitively meaning-
less”(Zalta [2010]).5

If we accept the doctrines of logical positivism, then it does not further our un-
derstanding to search for meaning in a physical theory beyond its predictions about
experiments. If the theory conforms to experimental verification, then it is (for the
time being) a correct theory.6 Of course, the logical positivists did not put an end
to the discussion; for many scientists, it was essential that they have a conviction
regarding the interpretation of the physical theory they are considering. The issue
became especially salient as quantum theory came of age in the late 1920s, as many
of the mathematical objects used in the quantum theory were lacking a readily ap-
parent physical analog. Ultimately, it would be up to physicists to construct an
interpretation of the mathematical machinery that underlaid quantum theory.

1.2 Interpretations of Quantum Mechanics

One of the first major steps taken towards a physical theory of quanta was Einstein’s
explanation of the photoelectric effect via quantization of the electromagnetic field.78

This was the first suggestion that an object could exhibit both wave and particle
properties.9 Brilliant minds are ever prone to abstraction, and soon this duality was
being applied objects classically thought of strictly as particles, as de Broglie and
Schrödinger began to consider the wave mechanics of particles.

4We will assume that recording the sound or employing some other remote listening mechanism
is equivalent to someone being there to hear it.

5This criterion was not without its critics. Karl Popper urged a shift from a criterion of verifia-
bility to one of falsifiability. Consider the statement “All electrons have equal charge.” In order to
actually verify this statement, one would have to observe every electron in the universe, which is not
possible; however, it is clearly something we want to include as scientific knowledge. Notice that it
is easily falsifiable; one would only need observe one electron with a charge not equal to all others.

6Of course, when considering two theories which both fully conform to experiment, we choose the
more simple and elegant of the two; this is, however, an aesthetic choice, as both theories constitute
true knowledge.

7This section adapts material primarily from Baggott [1992].
8The photoelectric effect is the ejection of electrons by a metal surface when light is shone on it.

What puzzled many is that the energy of the ejected electrons depends on the frequency of the light
incident on the surface, but not on the intensity. This could not be explained by a wave model of
light.

9More accurately, light could act as either a wave or a particle, depending on the circumstances.
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Schrödinger, Born, and the First Challenge to Realism

In formulating the dynamics of quantum mechanics, Schrödinger employed a mathe-
matical object called a “wave function,” which is governed by the famous Schrödinger
equation. The question immediately arose: to what element of reality does this wave
function correspond? Schrödinger’s first idea was to equate the wave function with
oscillation in the electromagnetic field, which would at large scales appear to our
observational devices as a particle.10 This approach immediately met with problems,
as pointed out by Hendrik Lorentz.11 Although Schrödinger could not defend such a
literal view of the wave function, he was certainly not ready to accept the alternatives
which would present themselves.

In 1926, Max Born suggested an alternative view of Schrödinger’s wave function.
Born’s idea was that the wavefunction (or, more precisely, the square of the mag-
nitude of the wave function) is a probability distribution, describing the probability
of finding the particle within a certain interval. This idea was radical, for it made
the wave function, rather than a physical quantity associated with the particle, be
a representation of our knowledge of the particle. This resolved many of the issues
that had arisen from Schrödinger’s literal interpretation of the wave function, but it
directly challenged determinism, which disturbed many thinkers of the time. Born
claimed to have drawn inspiration from Einstein, but a 1926 letter from Einstein to
Born betrayed Einstein’s distaste for the new theory:

Quantum mechanics is very impressive. But an inner voice tells me that
it is not yet the real thing. The theory produces a good deal but hardly
brings us closer to the secret of the Old One. I am at all events convinced
that He does not play dice.12

Niels Bohr and the Copenhagen Interpretation

The next big step towards the modern understanding of quantum mechanics would
come from a young Danish physicist named Niels Bohr. Bohr became the founder and
first director of the Institute of Theoretical Physics at the University of Copenhagen
in 1921, which would become a central institution in the advancement of theoretical
physics. In 1922, he was awarded the Nobel Prize for his modeling of the atom.13 In
October 1926, Bohr invited Schrödinger and Heisenberg to join him in Copenhagen
to discuss and debate issues regarding quantum mechanics. Schrödinger declined, but

10An analogy is readily drawn between this relation and the relation between ray optics and wave
optics; ray optics is a functional way of analyzing optical systems with characteristic length scale
much larger than the wavelength of light.

11When confined to a small region of space, the wave function (governed by the Schrödinger
equation) is expected to spread into a uniform distribution. This is obviously not what happens to
the E field of a confined electron. Furthermore, the wave function exists in configuration space, so
that a composite wave function of a 2-particle system is a 6-dimensional object, whereas the E field
of a two-particle composite state is obviously a 3-dimensional object.

12Einstein and Born [1971]
13His model, commonly known as the Bohr Model, theoretically explained the experimentally

known Rydberg formula for the hydrogen emission spectrum.



6 Chapter 1. Historical Background

Heisenberg joined Bohr; they were joined by Wolfgang Pauli, and the three together
formulated an interpretation of quantum mechanics now known as the Copenhagen
interpretation.14

The key principles of the Copenhagen interpretation are indeterminism, Born’s
statistical interpretation of the wave function, complementarity, and Bohr’s corre-
spondence principle (Zalta [2010]). Let us consider complementarity, for it is central
to the Copenhagen group’s idea.

Complementarity requires us to carefully examine how it is that we gain knowl-
edge about the world; in that sense, it is similar to logical positivism. The idea
behind complementarity is that an object can have two seemingly conflicting sets
of properties, so long as those properties are observable only in mutually exclusive
contexts. The most obvious example of this is wave-particle complementarity as
seen with light. Light has wave-like properties when observed in a certain way (a
double-slit experiment, for example) and has particle-like properties when observed
in a different way (such as when observing the photoelectric effect). Assuming that
the light has well-defined properties previous to measurement, how can we reconcile
these sets of observations? Does the photon somehow rapidly switch between wave
and particle properties in response to measurement? Bohr, in a decidedly positivist
manner, would dismiss this question as ill-defined. Complementarity is essentially
tied to the idea that is impossible for us to know things about the world beyond of
our ability to observe it.

The idea of complementarity justified, in some sense, Heisenberg’s famous un-
certainty relation. The uncertainty relation was now a quantitative statement of
the limits imposed on the measurement of complementary quantities.15 To embrace
complementarity was to embrace an element of indeterminism in the quantum world
(although as the opening quote from Bohr indicates, it is difficult to say such a “world”
even exists when it is entirely indeterminate previous to observation).

The final element of the Copenhagen interpretation is the correspondence princi-
ple, which requires that quantum mechanical laws reduce to classical laws when we
consider the limit of large quantum numbers. This requirement assures that quantum
physics and classical physics will not contradict each other when we are working with
classical length-scales.

The Copenhagen interpretation was not without its critics. It essentially places a
limit on what we are capable of knowing scientifically, which is a hard thing for any
inquiring mind to accept. Einstein in particular, in his quest to uncover the “secret
of the Old One,” was certainly not willing to accept such an interpretation, especially

14Note that these physicists did not call their interpretation by this name, and did not even
necessarily agree on all aspect of the interpretation. By the modern era, however, the refined
version of this interpretation has become so deeply entrenched that it is often simply referred to as
the “orthodox interpretation.”

15The uncertainty relation can be viewed as a mathematical statement about the relation between
the wavefunction of a particle in position space and the wavefunciton of the same particle in momen-
tum space; more generally, there also exists an uncertainty relation between any localized function
and its Fourier transform.
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with its inherent threats to causality.16 This disagreement between Bohr and Einstein
sparked a series of debates over the meaning of quantum theory.

The Bohr-Einstein Debates

On October 24th, 1927, Einstein, Bohr, and many other eminent physicists assembled
in Brussels for the fifth Solvay conference. Although Einstein made no contributions
to the formal proceedings, his intellectual sparring with Bohr served to lay the foun-
dations for one of Einstein’s strongest challenges to the Copenhagen interpretation of
quantum theory.17 Einstein proposed thought experiments (often referred to by the
German term Gedankenexperiment) which challenged Bohr’s complementarity and
indeterminism, and Bohr came up with responses which held up the requirements of
uncertainty, even using Einstein’s own theory of general relativity against him!18 I
will not describe the debates in detail; I refer the reader to Baggott [1992] §3.3 for a
very readable account.

By the end of these debates, it appeared that Bohr had defended his ideas against
the ingenious challenges brought against indeterminism by Einstein. However, the
greatest challenge was yet to come. After conceding that quantum mechanics may
not be inconsistent, Einstein set out to show that it was incomplete.

1.3 The Paradox of Einstein, Podolsky, and Rosen

In May of 1935, Einstein, along with Boris Podolsky and Nathan Rosen, published
a paper titled ‘Can quantum-mechanical description of reality be considered com-
plete?’ (A. Einstein [1935]). In this paper Einstein claimed to show that the wave
function did not offer a complete description of reality. He explained the notion of
reality at hand by saying “A sufficient condition for the reality of a physical quan-
tity is the possibility of predicting it with certainty, without disturbing the system.”
Einstein goes on to say that consideration of measurements performed on a certain
system possessing two complementary observables leads to the result that if the wave
function is in fact a complete description of the system, then there must exist two
complementary quantities which have simultaneous reality! This result is reached
through careful design of the system and selection of the two complementary quanti-
ties to which we attribute reality.

Consider a system of two particles which starts out in a composite state of zero
spin angular momentum.19 This is not difficult to conceive of; one such state would be
a hydrogen molecule with its electrons spin-paired in the ground state. Suppose that,
via some interaction, the composite system dissolves, and the two particles separate.

16The Copenhagen school would dismiss causality as a classical requirement, and a logical positivist
would similarly dismiss it as a metaphysical requirement.

17I refer, of course, to the famous paradox of Einstein, Podolsky, and Rosen.
18This refers to Bohr’s response to Einstein’s ‘photon box’ thought experiment.
19Einstein’s original argument involves the fuzzy quantities of momentum and position measure-

ments; we will present here David Bohm’s simplified version of the paradox, which uses spin- 1
2

particles.
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Figure 1.1: Bohr and Einstein in the home of Ehrenfest, December 1925
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Note that by conservation of angular momentum, the spins of the two particles are
now anti-correlated.20 If we measure the spin of particle a along some axis n̂ (which
can only take on two values, ±1

2
~), we know with certainty the value of the spin of

b along n̂. We thus must say that, according to Einstein’s definition, the spin of b
along n̂ is an element of physical reality. But since n̂ is arbitrary, we must attribute
physical reality to the spin of b along every axis!21 However, according to quantum
mechanics, the spin components of a particle measured along two perpendicular axes
are complementary, and cannot be known with exact precision simultaneously. Thus,
the quantum mechanical description is incomplete, for it does not allow us simulta-
neous knowledge of two values which have physical reality (as defined by Einstein).22

This struck at the core of Bohr’s idea of complementarity. If it was to be saved,
he would have to invoke some kind of action at a distance between the two particles,
where measurement of the spin of particle a would have the same effect upon particle
b as if we were to measure the spin of particle b in the first place! Bohr seemed to
find a way around this, and countered with an article of the same name as that of
Einstein, Podolsky, and Rosen, which challenged their definition of physical reality on
the basis of complementarity. The debate continued, however; was Bohr’s reply valid,
or had Einstein shown the incompleteness of quantum mechanics? The community
did not even think that a definitive answer was possible until decades later, when Bell
proposed a quantitative way of comparing the two views.

1.4 Hidden Variables and Bell’s Theorem

The work of John S. Bell in his paper titled ‘On the Einstein Podolsky Rosen Paradox’
(Bell [1964]) did not make a big splash when it was first published in 1964. Its
importance was only slowly recognized, but from the 1970s to today it has been
considered absolutely essential to any study of foundational quantum mechanics. The
idea behind Bell’s inequality will here be presented in a very qualitative manner;
a rigorous derivation would not serve to clarify the matter, as we do not use this
specific inequality in the experiment at hand. However, the curious reader is referred
to Appendix B for one derivation.

Hidden Variable Theories

Bell’s theorem compares quantum mechanics to a class of theories known as “hidden
variable theories.” Suppose that quantum mechanics is, in fact, an incomplete theory,

20Correlation generally means that we can infer the value of one quantity from the value of the
other. We use it here in a more specific way: two quantities , a and b, are correlated if a = b always
holds; they are anti-correlated if a = −b always holds.

21Note that we don’t have to measure the spin of a along n̂ (and thus infer the spin of b along n̂)
to establish the reality of the spin of b along n̂; it is enough that we could predict it with certainty
without disturbing b.

22In other words, a complete theory would describe precisely all - and specifically, these two -
elements of physical reality; quantum mechanics is only capable of describing them up to a finite
uncertainty.
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as was thought by Einstein, Podolsky, and Rosen. In that case, there must be some
parameter or set of parameters inaccessible to us, which fully describes the physical
state of the system.23 This is to say that before measurement, an observable does
have a certain value - we are simply ignorant of it until measurement. Quantum
mechanics then describes probabilities, but it doesn’t tell the whole story; the values
that quantum theory describes as probabilistic are, in fact, well determined, and we
no longer must think of God playing dice.

These kinds of theories are not unique to quantum mechanics. Consider the exam-
ple of Boltzmann’s statistical mechanics, which applied probability theory to study
large thermodynamic systems. In this theory we only speak of the system as a whole,
rather than analyze each individual constituent. We thus know from statistical me-
chanics what the probability is of any one particle in the system having a certain
position or velocity, but we do not know with certainty what the dynamics of any one
particle will be. In this case, then, the hidden variable would specify the dynamics
of each particle.24

With this rough definition of a hidden variable theory in mind, we are now pre-
pared to understand the momentous result of Bell.

Bell’s Theorem

Loosely put, Bell’s theorem states that no local realistic theory can reproduce all
the results of quantum mechanics. Why is this remarkable? What Einstein was
attempting to show with his paradox was that quantum mechanics must include some
set of hidden parameters. In defending his position, Bohr was defending the possibility
of complementarity and the Copenhagen interpretation, but he was not saying that
a hidden variable theory was impossible.25 What is radical about Bell’s theorem
is that it doesn’t simply allow us to leave or take the hidden variable concept; it
states a hidden variable theory will produce manifestly different results from quantum
mechanics taken without hidden variables! With this paper Bell forced the issue of
hidden variables into the realm of the empirical; for the first time, it was considered
possible to falsify local realism.

Bell’s inequality dealt with two spin-entangled particles as described above with
the EPR paradox. This arrangement, although ingenious in theory, would prove
prohibitively difficult to realize in practice. It was not until 1982 that a paper was
published which rigorously tested Bell’s inequality in an experimental laboratory.

23This is to say that this parameter would tell us exactly what quantum mechanics as it stands
can only tell us probabilistically.

24It is interesting that a notable positivist, Ernst Mach, opposed thinking of individual atoms
or molecules; he insisted that we only think of the thermodynamic system which they constitute.
However, the advancement of experimental technology allowed us to probe the individual entities of
a thermodynamic system, making Mach’s views untenable (Baggott [1992]).

25From a positivist’s point of view, however, if the hidden variable is not necessary, it is meta-
physical and does not belong within a physical theory.
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1.5 Experimental Verification

Bell pushed us closer to an empirical falsification of all hidden variable theories. He
did not take us all the way, however; the experimental techniques needed to perform
this experiment accurately were still years away. What experimenters needed was a
source that would output two particles in high volume, in a near-ideal singlet state.
One such source turned out to be the atomic cascade of the calcium atom.

In the ground state of the calcium atom, the outermost orbital is filled with two
spin-paired electrons. The net spin angular momentum of the two electrons is zero. If
we use a photon to excite one of the electrons, the photon imparts a quanta of angular
momentum onto the system, which appears as orbital angular momentum (since we
cannot change the spin angular momentum of the electron). Now suppose we excite
both electrons. Although there are multiple configurations of angular momentum
which could come of this double excitation, we are interested in the state where the
net angular momentum is zero. The doubly-excited calcium atom will undergo a rapid
return to the ground state, emitting two photons in the process. This rapid double
emission is referred to as a ‘cascade.’ Since the net angular momentum before the
cascade is zero, we know that the two emitted photons must have opposite circular
polarization.

In 1982, Alain Aspect of the University of Paris used such an atomic cascade
to test Bell’s inequality and show that nature did not adhere to the predictions of
a hidden variable theory (Aspect et al. [1982]). I will not here include a detailed
discussion of the experiment; for a more readable account than the original paper,
the reader is referred to Baggott [1992] §4.4. What is important is that, from their
measurements, Aspect and his colleagues violated the predictions of local realism by
over 46 standard deviations.26 Hidden variables theories has been decisively disproven
in a purely empirical fashion.

1.6 Bell’s Inequality Experiments Today

Did all work in the field come to a stop with the publication of Aspect et al. [1982]? Of
course not, for there were still small modifications to be made, and many were inter-
ested in making the experimental apparatus smaller and more elegant, so that these
results could be more easily reproduced. Additionally, the Aspect experiment tested
specifically the version of Bell’s inequality found in Clauser et al. [1970]. Physicists
continued to derive many different versions of Bell’s inequality, and experimenters
were constantly challenged to find ways to realize these inequalities experimentally.27

This thesis is concerned with one such test of local realism, as derived in Hardy
[1993], and a corresponding experimental realization, envisioned by Mark Beck and
his colleagues in Carlson et al. [2006].

26The form of Bell’s inequality used by Aspect was the generalization first derived by Clauser
et al. [1970].

27When I say something is a “version of Bell’s inequality,” I only mean that it is a quantitative
test of local realism.





Chapter 2

Theory

We now derive a quantum state which displays a testable violation of local realism.
The incompatibility of the state with assumptions of local realism are shown, and
the conditions for maximal violation of local realism are derived. The following is
adapted from Hardy [1993].1

2.1 Derivation of the Hardy State

Suppose we have a 2-photon polarization-entangled state, described in some basis by2

|Ψ〉 = a |H〉1 |H〉2 + eiφb |V 〉1 |V 〉2 , (2.1)

where |H〉i (|V 〉i) denotes that the ith element of the system is horizontally (vertically)
polarized, a and b are two real numbers, and the complex exponential is a unit-
amplitude phase factor. Normalization then gives

a2 + b2 = 1. (2.2)

In our experiment, we set the phase so that φ = 0, and thus

|Ψ〉 = a |H〉1 |H〉2 + b |V 〉1 |V 〉2 (2.3)

We now consider a new polarization basis, denoted Ĥ and V̂ , which for particle 1
is rotated an angle θ1 from the original basis. For particle 2, we rotate the basis by

1As originally written by Hardy, this account is quite opaque. Without clear motivation, he
moves through pages of mathematics, arriving finally at a particular expression of the two-particle
entangled state; he then makes clear how this state violates local realism. This ends-justify-the-
means approach is certainly not invalid, and perhaps is the cleanest way to go about such an
argument; however, it is certainly not the most illuminating. Although I take roughly the same
approach in this chapter, I might advise the befuddled reader to skip ahead to §2.2, and come to see
how the Hardy state violates local realism, before reading §2.1, and seeing how we arrive at such a
state.

2Hardy worked out the state relative to general quantum mechanical observables; we work specif-
ically with polarization, as it is the observable relevant to our experimental implementation.
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θ1 in the opposite direction.3 Our new polarization basis vectors are then related to
the original basis vectors by

|Ĥ〉i = cos θ1 |H〉i ± sin θ1 |V 〉i , (2.4)

|V̂ 〉i = ∓ sin θ1 |H〉i + cos θ1 |V 〉i , (2.5)

where the top signs correspond to particle 1 and the bottom signs correspond to
particle 2. There are then inverse relations

|H〉i = cos θ1 |Ĥ〉i ∓ sin θ1 |V̂ 〉i, (2.6)

|V 〉i = sin θ1 ± |Ĥ〉i + cos θ1 |V̂ 〉i. (2.7)

 H

V

H
^

V
^

θ1

Figure 2.1: Our basis Ĥ, V̂ is rotated by an angle θ1 relative to our original H, V
basis.

Substituting these inverse relations into Equation (2.3), we have

|Ψ〉 =
(
a cos2 θ1 − b sin2 θ1

)
|Ĥ〉1|Ĥ〉2 +

(
b cos2 θ1 − a sin2 θ1

)
|V̂ 〉1|V̂ 〉2+

(a sin θ1 cos θ1 + b sin θ1 cos θ1)
(
|Ĥ〉1|V̂ 〉2 − |V̂ 〉1|Ĥ〉2

)
(2.8)

For reasons that will become clear later, the Hardy state requires that the first coef-
ficient vanishes, i.e.

a cos2 θ1 − b sin2 θ1 = 0,

or
sin2 θ1

a
=

cos2 θ1

b
= k2,

3If this confuses you, hang on - it is a necessary complication, if our state |Ψ〉 is to exhibit the
properties we desire. I might recommend the confused reader to §2.2 to examine these properties.
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where k is some real constant.4 We can equivalently say that

sin θ1 = k
√
a and cos θ1 = k

√
b. (2.9)

These relations can be used in conjunction with the fact that sin2 θ1 + cos2 θ1 = 1 to
show that

k2 =
1

a+ b
. (2.10)

Substituting Equations (2.9) and (2.10) in (2.3), we can now express our state as

|Ψ〉 = (b− a) |V̂ 〉1|V̂ 〉2 +
√
ab
(
|Ĥ〉1|V̂ 〉2 − |V̂ 〉1|Ĥ〉2

)
, (2.11)

which can be written as (dropping a phase factor of −1)

|Ψ〉 =

( √
ab√
a− b

|Ĥ〉1 −
√
a− b |V̂ 〉1

)
×
( √

ab√
a− b

|Ĥ〉2 +
√
a− b |V̂ 〉2

)
− ab

a− b |Ĥ〉1|Ĥ〉2.

(2.12)
We now consider another change of basis, rotating by an angle θ2 relative to our θ1

basis for each particle. We will denote horizontal and vertical polarization in this
basis by |H̃〉 and |Ṽ 〉. The angle θ2 is given by

cos θ2 =

√
ab√

1− ab
and sin θ2 =

a− b√
1− ab

(2.13)

Our new basis vectors are thus

|H̃〉i = cos θ2 |Ĥ〉i ∓ sin θ2 |V̂ 〉i, (2.14)

|Ṽ 〉i = ± sin θ2 |Ĥ〉i + cos θ2 |V̂ 〉i, (2.15)

with inverse relations

|Ĥ〉i = cos θ2 |H̃〉i ± sin θ2 |Ṽ 〉i, (2.16)

|V̂ 〉i = ∓ sin θ2 |H̃〉i + cos θ2 |Ṽ 〉i. (2.17)

Again, the top sign denotes the transformation for particle 1, and the bottom sign
corresponds to particle 2. Using these definitions of the θ2 bases and Equation (2.12),
we express our state as

|Ψ〉 = N
(
|H̃〉1|H̃〉2 − cos2 θ2|Ĥ〉1|Ĥ〉2

)
. (2.18)

where N is defined as

N =
1− ab
a− b . (2.19)

4This is why we require that the bases rotate in opposite directions for the two particles - otherwise
we would be unable to have a cos2 θ1 − b sin2 θ1 = 0.
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 H

V

H
^

V
^

θ1

V
~ H

~

θ2

Figure 2.2: Our basis H̃, Ṽ is rotated by an angle θ2 relative to our original Ĥ, V̂
basis.

Using the basis transformation rules given in Equations (2.14) through (2.17) and
the form of |Ψ〉 given in Equation (2.18), we can express of our state |Ψ〉 in four
equivalent forms:

|Ψ〉 = N
[
(sin θ2 cos θ2)

(
|V̂ 〉1|Ĥ〉2 − |Ĥ〉1|V̂ 〉2

)
− sin2 θ2 |V̂ 〉1|V̂ 〉2

]
, (2.20)

|Ψ〉 = N
[
|H̃〉1

(
cos θ2 |Ĥ〉2 + sin θ2 |V̂ 〉2

)
− cos2 θ2

(
cos θ2 |H̃〉1 + sin θ2 |Ṽ 〉1

)
|Ĥ〉2

]
,

(2.21)

|Ψ〉 = N
[(

cos θ2 |Ĥ〉1 − sin θ2 |V̂ 〉1
)
|H̃〉2 − cos2 θ2 |Ĥ〉1

(
cos θ2 |H̃〉2 − sin θ2 |Ṽ 〉2

)]
,

(2.22)

|Ψ〉 = N
[
|H̃〉1|H̃〉2 − cos2 θ2

(
cos θ2 |H̃〉1 + sin θ2 |Ṽ 〉1

)(
cos θ2 |H̃〉2 − sin θ2 |Ṽ 〉2

)]
.

(2.23)

2.2 Incompatibility with Local Realism

We now look to our operators corresponding to measurement of horizontal polar-
ization in the θ1 basis and vertical polarization in the θ2 basis. Note that these
operators function on a single particle; we will use pairs of such operators to observe
the polarization of our 2-particle system, for example,

Ĥi = |Ĥ〉i〈Ĥ|i, (2.24)

Ṽi = |Ṽ 〉i〈Ṽ |i. (2.25)
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These operators can take values of 0 or 1, representing non-detection or detection
by an appropriate polarization detector.5 We now will briefly digress, and discuss
conventions of probability calculation and notation.

The probability amplitude that an outcome A will be measured for an observable
Â on a quantum system |Ψ〉 is given by |〈A |Ψ〉|2. We denote this probability P (A):

P (A) = |〈A |Ψ〉|2 .

For a two particle system, we can observe joint probabilities, which is to say the
probability that we will measure both A on particle 1 and B on particle 2. We denote
this probability P (A1, B2), where the subscripts denote the particle in the system
upon which the operator acts. This probability is then given by

P (A1, B2) = |( 1〈A| 2〈B|) |Ψ〉|2 .

Another probability we are interested in for a system of multiple particles is the
conditional probability, which is to say the probability that we will measure A1 given
that we measure B2. We denote this P (A1|B2). This is given by simply dividing the
joint probability by the probability of B2:

P (A1|B2) =
P (A1, B2)

P (B2)
. (2.26)

We can now make four observations about the Hardy state, based on the four repre-
sentations of |Ψ〉, as shown in Equations (2.20), (2.21), (2.22), and (2.23).

1. Looking to the representation of |Ψ〉 shown in Equation (2.20), we see that
there is zero probability that we will measure horizontal polarization for both
particles in the θ1 basis : ∣∣∣( 1〈Ĥ| 2〈Ĥ|

)
|Ψ〉
∣∣∣2 = 0 (2.27)

We designed the system as such when we required that a cos2 θ1 − b sin2 θ1 = 0.

2. Looking to the representation of |Ψ〉 shown in Equation (2.21), we see that

P (Ṽ1) = P (Ĥ2, Ṽ1), and so

P
(
Ĥ2|Ṽ1

)
= 1 (2.28)

This is to say that if we measure vertical polarization on particle 1 in the θ2

basis, then we are sure to measure horizontal polarization on particle 2 in the
θ1 basis.

5Note that we have here listed two of eight operators in this class; one could measure either
horizontal or vertical polarization, in either of the two bases, on either particle.
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3. Similarly, looking to the representation of |Ψ〉 shown in Equation (2.22), if we
measure vertical polarization on particle 2 in the θ2 basis, then we are sure to
measure horizontal polarization on particle 1 in the θ1 basis. It is easily seen
that P (Ṽ2) = P (Ĥ1, Ṽ2), and so from Equation (2.26) we see that

P
(
Ĥ1|Ṽ2

)
= 1 (2.29)

4. Finally, looking to the representation of |Ψ〉 seen in Equation (2.23), the joint
probability of measuring vertical polarization on both photons in the θ2 basis,

P (Ṽ1, Ṽ2) =
∣∣∣( 1〈Ṽ | 2〈Ṽ |

)
|Ψ〉
∣∣∣2

=
∣∣N cos2 θ2 sin2 θ2

∣∣2 (2.30)

We are now in a position to derive a contradiction using only the assumption of local
realism. Assuming local realism is to assume that a measurement made on one par-
ticle in the system cannot affect the outcome of a measurement made on the other
particle in the system; that is to say, each particle in the composite state has a well-
defined polarization independent of the other. If this is indeed the case, then there is
some parameter or set of parameters, which we will denote λ, which determines the
polarization of each particle in the system. This is called the “hidden variable,” for
it is not accessible to us through application of quantum theory; we can only assert
that such a parameter or set of parameters must exist in order for local realism to hold.

We will now discuss a specific instance of measurement. In this case, we can measure
only values of 1 or 0.6 Consider an event in which we measure both photons to have
vertical polarization in the θ2 basis. We know this is allowed, as the probability of
this event is non-zero in Equation (2.30) for a 6= b (see Equation 2.19). Since the
hidden variable λ determines the result of measurement on the system, we write

Ṽ1(λ)Ṽ2(λ) = 1. (2.32)

Now suppose that we had chosen to measure the polarization of particle 1 in the θ1

basis. This measurement event cannot affect the outcome of our measurement on
particle 2, based on our assumption of local realism. From Equation (2.29), we see

that since we still would measure Ṽ2(λ) = 1, we necessarily have

Ĥ1(λ)Ṽ2(λ) = 1. (2.33)

Similarly, if we had decided to measure polarization in the θ1 basis on particle 2, we
would have

Ṽ1(λ)Ĥ2(λ) = 1. (2.34)

6We measure polarization by passing particles through polarizers with detectors behind them;
thus, the values 1 or 0 correspond to detection events at the detectors behind the appropriate
polarizers. As an example: Ṽ1Ṽ2 = 1 would indicate that vertical polarization in the θ2 basis was
measured on both particles. Similarly, Ṽ1Ṽ2 = 0 would indicate that at least one (if not both) of the
particles was not detected at the detector behind the vertical polarizer.



2.3. The Maximal Hardy State 19

Finally, suppose that we had chosen to measure both particles in the θ1 basis. We have
shown in Equations (2.33) and (2.34), for this measurement event, which corresponds

to the hidden variable λ, that Ĥθ1 1(λ) = 1 and Ĥθ1 2(λ) = 1. Therefore, if we had
chosen to measure both particles in the θ1 basis, we would have measured

Ĥ1(λ)Ĥ2(λ) = 1, (2.35)

which directly contradicts Equation (2.27).
This contradiction rests on the assumption of local realism, which is the assump-

tion that we can choose to change the basis of our measurement “at the last minute.”7

We therefore conclude that local realism is incompatible with the predictions of quan-
tum theory in this case.

2.3 The Maximal Hardy State

We have shown the incompatibility of the Hardy state with local realism by consid-
ering one specific event. But if we follow this logic on a larger scale, any (Ṽ1, Ṽ2)

detection would have been a (Ĥ1, Ĥ2) detection, had we repositioned our detectors
appropriately. Saying this in terms of probabilities, what we have just shown is that
for our state |Ψ〉, local realism predicts

P (Ĥ1, Ĥ2) ≥ P (Ṽ1, Ṽ2). (2.36)

What we must do experimentally is measure these two probabilities and compare
them.8 The greatest violation of Equation (2.36) will occur when we maximize

P (Ṽ1, Ṽ2). From Equations (2.30), (2.19) and (2.13), we have

P (Ṽ1, Ṽ2) =
∣∣N cos2 θ2 sin2 θ2

∣∣2
=

[
(a− b) ab

1− ab

]2

.

We can express this in terms of a single variable x = ab:(
(a− b) ab

1− ab

)2

=
(ab)2(a2 + b2 − 2ab)

(1− ab)2

=
x2 (1− 2x)

(1− x)2
,

which is maximized when

x =
3−
√

5

2
, (2.37)

7This is to say we change the basis of measurement on (say) particle 1 such that no sub-luminal
communication could alert particle 2 to this change before we measure the polarization on both
particles.

8This discussion is taken in part from Carlson et al. [2006] as well as Hardy [1993]
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yielding
P (Ṽ1, Ṽ2) = 0.09017 ≈ 9%. (2.38)

We now have a set of two equations governing our maximal a and b:

a2 + b2 = 1 (2.39)

2ab = 3−
√

5 (2.40)

A solution to this set of equations is

a ≈ 0.421 and b ≈ 0.907 (2.41)

The other three solutions consist in negation or reversal of our values for a and
b. Of course, the states corresponding to these other solutions lead to equal violation
of Equation (2.36). From Equations (2.2), (2.9) and (2.13), we can find the angles θ1

and θ2 corresponding to the above values for a and b:

θ1 ≈ 34.27◦ and θ2 ≈ 38.17◦ (2.42)



Chapter 3

Experimental Considerations and
Techniques

3.1 The Quantity H

How are we to measure the extent to which we violate the inequality shown in Equa-
tion (2.36)? We could simply compare two probabilities, which obey different inequal-
ities for local realism and quantum theory:

P (Ĥ1, Ĥ2) ≥ P (Ṽ1, Ṽ2) (local realism)

P (Ĥ1, Ĥ2) < P (Ṽ1, Ṽ2) (QM)

However, this does not ensure that we are measuring photons in the Hardy state.
In order to be sure that we are measuring the Hardy state (or as close to the Hardy
state as is possible), our test must quantitatively ensure that Observations 1-4 are sat-
isfied. We can rewrite observations 2 and 3 in a form more amenable to measurement
as follows:1

2. Measurement of vertical polarization on particle 2 in the θ2 basis implies mea-
surement of horizontal polarization on particle 1 in the θ1 basis. We can equiva-
lently express this by saying that we will never simultaneously measure vertical
polarization on particle 1 in the θ1 basis and vertical polarization on particle 2
in the θ2 basis :

P (V̂1, Ṽ2) = 0 (3.1)

3. We can similarly express observation 3 by saying that we will never simulta-
neously measure vertical polarization on particle 1 in the θ2 basis and vertical
polarization on particle 2 in the θ1 basis :

P (Ṽ1, V̂2) = 0 (3.2)

1Note that these two revisions are based on the theorem of logic

a→∼b ⇐⇒ ∼(a ∧ b)
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We now have four quantities which we can measure experimentally. We wish
to maximize our measurement of the probability shown in Equation (2.30), while
minimizing our measurement of the probabilities shown in Equations (2.27), (3.1),
and (3.2). It is thus natural to define the quantity H:

H = P (Ṽ1, Ṽ2)− P (Ĥ1, Ĥ2)− P (Ṽ1, V̂2)− P (V̂1, Ṽ2) (3.3)

Local realism is violated when H ≥ 0.

3.1.1 Measurement Angles

Experimentally, it is convenient to describe these probabilities in terms of the angles
which the wave plates will be set at during measurement. As discussed in Chapter 2,
in order to satisfy P (Ĥ1, Ĥ2) = 0, the polarizers on the two particles must rotate in
opposite directions.2

Our apparatus is designed to read P (H1, H2). Therefore, if we wish to measure
horizontal probability in a basis (Hθj

, Vθj
), we rotate our waveplates by an angle θj,

and if we wish to measure vertical probability in a basis (Hθj
, Vθj

), we rotate our wave
plates by an angle θj ± 90◦.

With that in mind, we define the angle of |H〉 as 0◦. We then rewrite Equa-

tion (3.3) using Ĥ → α, V̂ → α⊥, Ṽ → β,3 so

H = P (−β, β)− P (−α, α)− P (−β, α⊥)− P (−α⊥, β) (3.4)

What are the angles α and β? Our apparatus is set up so that we measure
P (H1, H2) with the half wave plates set to zero. Comparing Equations (3.3) and

(3.4), Ĥ → α, so α = θ1. As for β, we know that the (H̃, Ṽ ) basis is rotated from our
original basis by an angle of (θ1 + θ2). Again, comparing Equations (3.3) and (3.4),

Ṽ → β, so β = θ1 + θ2 ± 90◦. We choose the negative sign to get

α = 34.27◦ and β = −17.56◦ (3.5)

For convenience, we absorb the negative sign on β into our expression for H, so

H = P (β,−β)− P (−α, α)− P (β, α⊥)− P (−α⊥,−β), (3.6)

and

α = 34.27◦ and β = 17.56◦. (3.7)

2See §2.1
3We set the particle 1 axes to rotate through a negative angle and particle 2 axes to rotate

through a positive angle so that Equation 3.6 is consistent with Carlson et al. [2006]. Of course, we
could just as well have rotated the particle 1 axes a positive angle and the particle 2 axes a negative
angle.
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Figure 3.1: Plot of H vs. α, β. The white point is the (α, β) value used in our
experiment, and the thick contour is H = 0.

A plot of H is shown in Figure 3.1. This plot is generated using4

P (α, β) = (a cosα cos β + b sinα sin β)2, (3.8)

to calculate all four probabilities involved in Equation (3.6). Our point of measure-
ment is marked, along with the H = 0 contour. One can see from the diagram that we
do not measure at the precise maximum of H, which occurs around (α, β) = (31◦, 9◦).

Why do these angles not agree with those calculated in Chapter 2? Figure 3.1 is
generated by allowing all the probabilities to vary freely; there is no constraint that
P (−α, α) = P (β, α⊥) = P (−α⊥,−β) = 0, as there was in Chapter 2. By allowing
these probabilities to be non-zero, we can increase the value of P (β,−β) significantly
and thus increase H. However, in practice, we find that, compared to measurement
at (α, β) = (34◦, 17◦), measurement at (α, β) = (31◦, 9◦) increases the probabilities
we wish to minimize significantly, while not having much affect on the probability
we wish to maximize. The crux of this experiment is to get the three probabilities
P (−α, α), P (β, α⊥), and P (−α⊥,−β) as low as possible; in practice, it is this that
gives us maximal violation of Equation (3.6).

4See Appendix A of Carlson et al. [2006] for a derivation.
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Figure 3.2: Experimental apparatus for determining H. Here QP is the quartz plate,
DCC is the downconversion crystal, SPCM is the single photon counting module,
RCHP is the Rochon polarizer, and λ/2 is the half-wave plate.

3.2 Instruments and Optical Elements

Figure 3.2 shows the setup for measuring H.

Spontaneous Parametric Down-Conversion

The pump laser5 outputs light which is reflected off two mirrors and passes through
a half-wave plate and quartz plate before reaching the down-conversion crystal.

Spontaneous parametric down-conversion (henceforth referred to as SPDC) is a
process by which a photon is converted into two photons. A schematic of the process
is shown in Figure 3.3. SPDC is a nonlinear optical process,6 and occurs with a very
low probability (∼ 10−8).7 Although this is not an efficient process, it is much more

5Power Technology, Inc. Laser Diode Control Unit Model #LDCU12/6931. Output wavelength:
405nm. Max power: 50mW. Safety goggles must be worn at all times when the laser is on.

6The polarization of a dielectric medium in the presence of an electric field is classically given by

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + ...

For small electric field amplitudes, the linear (χ(1)) term dominates. However, when we have a
large amplitude field (i.e., a laser beam), we must take into consideration the second-order polar-
ization (the χ(2) term). Even with large field amplitudes, however, nonlinear processed are still
dominated by linear processes, and have a low probability of occurring.

7Suryawan [2009]
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easily implemented and efficient than the atomic cascade used by Aspect et al. [1982].
SPDC occurs when an electron is excited by an incident photon, but as the electron

returns to the ground state, it emits two photons rather than one.8 We refer to the two
output beams as the signal and idler beams.9 Conservation of energy and momentum
respectively require that

ωp = ωi + ωs and kp = ki + ks.

ωp

ωi

ωs

DCC

Figure 3.3: Spontaneous Parametric Down-Conversion. DCC denoted the down-
conversion crystal.

We employ degenerate down-conversion, which is a down-conversion process by
which ωi = ωs. Since we pump the crystal with a 405 nm laser, the two photons are
output with a wavelength of 810 nm.10

We achieve SPDC through the use of two stacked β-Barium Borate (BBO) crys-
tals.11 Each are 0.5mm thick, and they are mounted so that one is rotated 90◦

relative to the other about the axis perpendicular to the large face. This allows for
downconversion of both horizontally and vertically polarized photons:

a |H〉+ b eiφ |V 〉 SPDC−−−−→ a |V 〉1 |V 〉2 + b eiφ |H〉1 |H〉2
The signal and idler beams are deflected by an angle of 3◦.12 The half-wave plate

preceding the BBO crystal served to adjust the relative amplitudes of a and b; the
quartz plate adjusts the phase φ. We adjust the phase so that φ = 0, i.e. so that the
light is exactly linearly polarized.

8SPDC can be thought of as the reverse of sum-frequency mixing. For two electric fields, with
frequencies ω1 and ω2, the second-order polarization is

P (2) = ε0χ
(2)E1 cos (ω1t)E2 cos (ω2t)

= ε0χ
(2)E1E2

(
cos (ω1 − ω2)t+ cos (ω1 + ω2)t

)
And so if we observe the second-order field, we see waves with frequency ω1 + ω2. In SPDC, the

opposite occurs; we have a wave of frequency ω1 + ω2, and observe it separate into two beams of
frequency ω1 and ω2.

9It is arbitrary which beam is labeled signal and which is labeled idler.
10Not all photons have a wavelength of precisely 810 nm. Rather, the signal and idler photons

have a spread which is centered around 810 nm. Note that if λi > 810 nm, then λs < 810 nm, in
order to conserve energy.

11Purchased from Photop Technologies.
12See Suryawan [2009] or Vitullo [2007] for a derivation.
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Rochon Polarizers

The signal and idler beams leave the BBO crystal and pass through a series of op-
tical elements which measure their polarization in a given axis. We measure the
polarization of photons by using a Rochon polarizer.13 Rochon polarizers separate
a homogeneously polarized field by transmitting and deflecting perpendicular com-
ponents of the incident light (see Figure 3.4).14 Rochon prisms are available which
deflect at a range of angles (from < 1◦ to > 15◦). We use a prism with 15◦ deflec-
tion.15 We place half-wave plates directly before the Rochon prims, which allows us
to effectively modify the polarization axis of the prism, and thus define along which
axis we measure.
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10.13Polarization Components
RCHP

Rochon prisms are used in applications where good polarization selectiv-
ity is required across a large range of wavelengths. In a Rochon prism,
both polarization components are transmitted. The p-polarized compo-
nent is transmitted directly through and the s-polarized component is
deviated from the normal.Calcite RCHP has an extinction ratio of 1#1045

from 450 nm to 2300 nm. For a larger wavelength range requirement or
deep UV performance, MgF2 RCHP can be used with an extinction ratio
of 1#1043 from 140 nm to 6000 nm.

MgF2 RCHP comprise two prisms of single crystal magnesium fluoride
which are optically contacted. Calcite RCHP comprise a prism of calcite and
a prism of FK5 glass cemented together. In a Rochon, one prism must have
its optical axis perpendicular to the entrance polished face; in calcite this
is a fragile plane.Therefore, FK5 has been chosen as a more robust mate-
rial with similar optical properties as calcite.

$ VUV-grade MgF2 or calcite polarizers

$ MgF2 deviation angle 5.1° at 193 nm

$ Extraordinary beam (s-polarized) deviations of 5°, 10°,
and 15° available

$ Broadband 1#1045 extinction ratio

$ MgF2 polarizing bandwidth: 140–6000 nm

Rochon Prism
Polarizers

SPECIFICATIONS: Rochon Prism Polarizers

Optical Material MgF2 or Calcite/FK5 glass
Surface Quality 40-20 scratch and dig

Housing Material Black-anodized aluminum
Transmitted Wavefront Error 3/4l–1½l at 633 nm

Extinction Ratio MgF2: 1#1043; Calcite: 1#1045

Transmission Efficiency T > 95%
Clear Aperture 10 mm

Field of View 3° about normal
Damage Threshold

Pulsed Calcite: 10 mJ/cm2, 20 nsec,
20 Hz @ 1064 nm
MgF2: 100 mJ/cm2, 20 nsec,
20 Hz @ 1064 nm

cw 10 W/cm2 @ 1064 nm
Antireflection Coating Ravg!0.5%

Rochon prism polarizers

L

D
v

MgF2 Rochon Prism Polarizers

CA Deviation Angle D L PART 
(mm) (°) (mm) (mm) NUMBER

9.0 5.0 at 248 nm 38.1 57.2 RCHP-5.0-MF

Calcite Rochon Prism Polarizers

CA Deviation Angle D L AR Coating AR Coating
(mm) (°) (mm) (mm) Uncoated 425–675 nm 670–1064 nm

10.0 5.0 19.0 19.1
10.0 10.0 19.0 19.1
10.0 15.0 19.0 28.6

PART NUMBER

RCHP-5.0-CA
RCHP-10.0-CA
RCHP-15.0-CA

RCHP-5.0-CA-425-675
RCHP-10.0-CA-425-675
RCHP-15.0-CA-425-675

RCHP-5.0-CA-670-1064
RCHP-10.0-CA-670-1064
RCHP-15.0-CA-670-1064

Figure 3.4: A Rochon Polarizer. Used with permission from CVI Melles Griot.

The light then is coupled into fiber by collimators A, B, A′, and B′. The polarizers
are set up so that A and B correspond to horizontal polarization in the given axis,
and A′ and B′ correspond to vertical polarization.16

Single Photon Detection and Coincidence Counting

After the light is coupled into fibers by the collimators, it is sent to a single-photon
counting module, or SPCM.17 In the SPCMs, an avalanche photodiode converts single-
photon signals into a 5V TTL (transistor-transistor logic) electric pulse.18 These de-
tectors have a rise time of ∼ 20 ns.

13Rochon prisms are preferable to the standard beam-splitter cubes because they are more efficient.
14Which components are transmitted and which are reflected depend upon the orientation of the

polarizer.
15CVI Melles Griot part number RCHP-15.0-CA- 670-1064.
16We refer to “detectors” A, B, A′, and B′, but this is misleading, as the detection actually occurs

in the SPCMs. When we say we align the detectors, we really mean that we align the collimators
which then send the coupled light to the SPCM.

17Perkin Elmer SPCM-AQ4C.
18An excellent explanation of this process is given in Suryawan [2009].
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Figure 3.5: Coincidence electronics. Ch. 1-4 are raw counts from detectors; Ch. 5-8
are coincidence counts.

The TTL signals from the SPCMs are sent to the a time-to-amplitude converter/single-
channel analyzer.19 Figure 3.5 shows how the detectors are connected to the four
TAC/SCA units to give the four coincidence counts AB, AB′, A′B, and A′B′.

Each TAC/SCA has three inputs: start (ST), stop (SP), and gate (GT). When
the start gate is triggered by a TTL pulse, the SCA waits for a user-defined amount of
time (called the window). If it receives a pulse on the stop input within this window,
then a coincidence event is registered, and the SCA outputs a TTL pulse. The TAC
operates similarly, but will output a signal whose amplitude is proportional to the
time between the start and stop inputs. The SCA can also be operated in a mode
where start pulses are only accepted when there is a simultaneous pulse on the gate
input. Since we only detect coincidence between two inputs, the use of the gate input
is unnecessary.

The A and A′ detectors are connected to the coincidence electronics via a 3 ft
BNC cable. The electric signals travel at ∼ 2/3 c through the cable, so the signal
takes ∼ 4.5 ns to travel through the cable. The B and B′ detectors are connected
via a 13 ft BNC cable, and we measure a 14.7 ns delay between the outputs of the
two cables. The A and A′ detectors are then connected to the start inputs, and the
B and B′ detectors are connected to the stop inputs. Although the SAC output is
ultimately what we measure, observing the TAC output can be useful is setting the
SCA window.20

19Ortec 567 TAC/SCA
20Our SAC window for this experiment was ∼ 2.4 ns.
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Monitoring Coincidence via LabVIEW

The outputs of the detectors and the SCAs are sent to a counting board,21 which
interfaces with LabVIEW. For his quantum mechanics laboratory,22 Mark Beck has
written LabVIEW VIs which were used not only for the Hardy experiment, but also
for the two preliminary experiments.23

In order to use Mark’s program in our laboratory, however, we had to modify it
to interface with the equipment at hand, which was slightly different from Mark’s
equipment. The issue was the controller which controls the motorized waveplates;
whereas Mark calls for the use of a GPIB controller, we had a serial controller24 on
hand. The sub-VIs which send or receive commands from the controller had to be
rewritten in order to work with the NSC-SB.25

With these modifications, the VI was capable of either actively monitoring the four
coincidence counts and the corresponding probability26 with a variable update time,
or taking data in a fully automated fashion, moving the waveplates and calculating
the appropriate probabilities automatically.27

3.3 Alignment of Optical Elements

As with most optical experiments, the most challenging aspect of Hardy’s test is
proper alignment of the optical elements. I will provide a thoroughly detailed de-
scription of my alignment procedure in the hopes that it may be helpful to future
students who undertake to perform Hardy’s test.

An essential tool in the alignment of the system is the use of an alignment laser.28

The output of this laser is fiber-coupled backwards through the detectors. This allows
us to “aim” the detectors and ensure that they are roughly facing the downconversion
crystal. The alignment laser also allows us to ensure that the surfaces of the half-
wave plate and Rochon crystals are normal to the direction of propagation, through
observation of the reflection of the beam off of these optical elements (this procedure
is described below in detail).

21National Instruments PCI-6602.
22Whitman College course no. P385
23These are the Grangier Experiment and Single-Photon Interference; see the Appendices for

details.
24Newport NSC-SB
25It is evident why Mark no longer uses this controller - it was perpetually problematic, frequently

misinterpreting commands sent, or ignoring them altogether.
26Mark’s VI is set up to measure PAB , which is given by

PAB =
NAB

NAB +NAB′ +NA′B +NA′B′

27Although it was possible to use the VI in this manner, it was ultimately prohibitively error-prone;
see Ch. 5 for details.

28Thorlabs LPS-785-FC 785nm laser diode powered by ILX Lightwave LDX-3412 precision current
source.
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Initial Alignment

First, we must set up the pump and down-conversion section of the apparatus by
mounting the laser, half-wave plate, quartz plate, and down-conversion crystal on the
optical table. The quartz plate is mounted on a rotation stage. It is desirable to
leave space between the optical elements so that irises can be inserted for alignment
purposes.

We must ensure that the half-wave plate is normal to the direction of propagation
to the laser beam. To do this, insert an iris in the beam preceding the half wave plate.
Tighten the iris until the beam is small. Most of the laser light that passes through
the wave plate will be transmitted, but a small portion will be reflected; we can ob-
serve the reflection of the wave plate and tell its angle relative to the propagation of
the beam. When the reflection lines up exactly with where the beam passes through
the iris, we know that the wave-plate is at normal incidence. Insert the quartz plate,
and repeat this to ensure that the quartz plate is also at normal incidence.29

Using the same technique described above, check that the beam strikes the down-
conversion crystal is at normal incidence. Interestingly, the crystal does not down-
convert at perfectly normal incidence - it prefers to be tilted from the normal at an
angle of approximately 3◦.30 For now, however, we will put the crystal at normal
incidence - it will later be detuned from the normal to maximize the flux of down-
converted photons. Again, most of the light that is incident upon the crystal will be
transmitted; only a small portion of the light is down-converted.31

Place a beam-stop approximately 1.5 m past the down-conversion crystal.32 De-
tectors A and B are placed at a 3◦ deflection from the transmitted beam, roughly 2
m from the down-conversion crystal.33 Although not absolutely necessary, it is in-
credibly helpful to place one of the detectors on a translation stage, so that minor
adjustments in horizontal position can be made without disturbing the alignment of
the detector. Using the alignment laser, the detectors are aimed so that the alignment
laser passes through the down-conversion crystal. Note that this does not ensure that
we will detect the output of the crystal - it only ensures that if the crystal outputs
photons in the direction of the detector, they will be seen by the detector.

29We will eventually rotate the quartz plate to adjust phase; for alignment, however, it is best to
leave it at normal incidence.

30That is, each crystal prefers to be tilted 3◦ in the direction of the accepted pump polarization.
31I will often refer to the “transmitted beam;” by this I mean the beam of light that is transmitted

by the crystal.
32In this discussion, I will order the optical elements by the direction of propagation of the laser

beam - thus, the “first” wave plate is the one above the downconversion crystal in Figure 3.2, the
beam stop is “after” downconversion crystal, etc.

33The distance from the downconversion crystal to the detectors does not directly affect our
measurements; however, due to the small deflection of the down-converted photons, the length from
the crystal to the detectors must be large enough that the appropriate half-wave plates and polarizers
can be fit into both arms of the apparatus.
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Detecting Entanglement

We are now ready to find entangled photon pairs. With the detectors and coinci-
dence electronics properly connected to the computer, turn on the laser and start up
the appropriate Labview VI.34 By careful adjustment of the detectors, maximize the
counts of both detectors. The long-pass filters must also be aligned, which can be
done roughly via the alignment laser, with fine-tuning done by monitoring detection
counts in LabVIEW. What we are interested in is not maximizing the raw counts
on each detector, however - we wish to maximize the coincidences on the detectors,
which correspond to entangled photon pairs.

When one is not observing photon pairs, it can be difficult to say precisely which
factor is to blame. There are three main issues that arise in observing entanglement:

1. The detectors are not placed correctly. That is, the detectors are not placed
symmetrically at 3◦ deflection from the path of the beam transmitted by the
down-conversion crystal. This is done roughly by simple geometry and mea-
surement - the fine alignment is done via a translation stage.

2. The down-conversion crystal is not at the proper angle. Each of the two stacked
crystals are very sensitive to tilt in the direction parallel to their output polar-
ization. For example, if one has low |V 〉 |V 〉 outputs, then the vertical tilt of the
crystal should be carefully adjusted. Once the detectors are at approximately
the right location, the crystal should be tilted until some photon pairs are ob-
served. We can then maximize the number of pairs observed by translating one
of the detectors, and then re-tuning the crystal.

3. The pump beam is not at polarized properly. If we have adjusted only one axis
of the down-conversion crystal (i.e. we have only tuned one of the two stacked
crystals properly), then the pump beam must be appropriately polarized to
pump the crystal and obtain photon pairs. The output of the laser used in this
experiment is polarized; rotation of the half-wave plate preceding the crystal
will modify this polarization. Use this to maximize the number of photon pairs
observed.

4. The detectors are not at the right height. Ensure that both detectors are at the
same height, and that the beam enters the crystal and hits the beam stop at
roughly this height. Fine adjustments to the height of the beam can be made
on the mirrors which reflect the pump beam. Coincidence detection is extremely
height sensitive, so be careful in adjusting the mirrors.

I recommend addressing the four issues given in the above order, but it will be
necessary to fine-tune the system by iterating these adjustments (i.e. place the detec-
tors, tune the crystal, rotate the pump beam, adjust the height of the beam, re-adjust

34Most of Beck’s Labview VIs given on his website are capable of counting two-detector coinci-
dence. At this stage of alignment, I recommend using a simpler VI than the one designed to measure
H, as this VI carries a lot of unnecessary baggage.
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detectors, re-tune crystal, etc). When the system is properly aligned, one should be
able to observe ∼400 coincidences per second.35

Measuring Polarization of Photon Pairs

With this stage of alignment completed, we are ready to insert our Rochon polarizers
and align our A′ and B′ detectors. First, insert the Rochon polarizers approximately
1 m from the down-conversion crystal, in the path of the down-converted photons.
Using the alignment laser, ensure that the detectors A and B are still aimed at the
crystal so that the output of the alignment laser is passing through the crystal. Since
the output of the alignment laser is unpolarized, the alignment beam should split as
it exits the Rochon polarizer, with one output continuing straight and one deflecting
by 15◦. Now, couple the alignment laser into detector A′. By placing this detector in
front of the Rochon polarizer (so that the output of the alignment laser propagates
in the same direction as the output of the down-conversion crystal) we can check in
which direction the polarizer is deflecting. It is easiest to have the polarizers deflect-
ing outward, away from the path of the transmitted beam.

Now place the detector approximately where it should detect photons deflected
by 15◦ from detector A. Of course, we must make sure that the primed detectors
are at the same height as the unprimed detectors. The alignment laser coming out
of detector A′ should be aimed so that it enters the Rochon polarizer. We are now
concerned with the deflected beam, rather than the transmitted. We wish the de-
flected beam (from detector A′) to follow precisely the same path as the transmitted
beam (from detector A). We do this by observing the beam in two locations. We
insert an iris between the crystal and the Rochon polarizer, as close as possible to
the polarizer. We will observe the alignment beam here and as it passes through the
down-conversion crystal.

Couple the alignment beam into detector A. We have ensured that this detector is
well aligned in the previous section, so we will use the path of this alignment beam as
a reference. Tighten the iris, and place it so that the alignment beam passes through
the iris. Now, couple the alignment laser into detector A′. Aim the detector so that
the portion of the beam deflected by the Rochon polarizer passes through the iris. If
the beam passes through the iris and passes through the crystal at the same point as
our reference beam, we are done. However, it most likely will pass through the iris
and then not pass through the crystal. This means we must translate our detector
horizontally in order to match the two paths. Move the detector slightly, and then
again aim it at through the polarizer at the iris. Repeat this until the alignment
beam passes through both the iris and the crystal.

When the paths of the alignment beams are matched, the A′ detector is roughly
aligned. Repeat this procedure with detector B′.36 We are now ready to turn on the

35This number will vary with the power of the laser used and the efficiency of the down-conversion
crystal. The quoted number is for the specific equipment used in this laboratory.

36Of course, it doesn’t matter which primed detector you align first.



32 Chapter 3. Experimental Considerations and Techniques

laser and start the Hardy VI to test our alignment.37

At this point, insert the half-wave plates that sit in front of the polarizers. By
rotating these wave-plates, we should be able to pass the coincidence counts entirely
back and forth between the detectors. If the photon pairs are not being observed on
the detectors, recheck the rough alignment issues (height, aiming of alignment beam,
horizontal placement of detector) and then use the adjustment knobs to fine-tune
the detector. Now, we should be able to pass the coincidence counts between the
detectors perfectly (i.e. start out with 400 AB coincidence/sec, then by adjusting
both half-wave plates 45◦, have 400 A′B′ coincidence/sec).

A final consideration is determining the “experimental zeros” of the half-wave
plates. Set the half-wave plates to their zero hash. Since the down-conversion crys-
tal only outputs |H〉 |H〉 or |V 〉 |V 〉 pairs, we should measure zero AB′ and A′B
coincidence. If there is a non-zero measurement for these coincidences, make slight
adjustments to the wave plates until the setting is found where these coincidences are
minimized. This is the “experimental zero” of the waveplate. This is very important
to take into consideration when setting the angles of measurement during a data run.

Tuning the State

In order to maximize our Hardy violation, we use the state

|Ψ〉 = 0.421 |H〉1 |H〉2 + 0.907 |V 〉1 |V 〉2 . (3.9)

Since the probability of measuring |H〉1 |H〉2 coincidence is |a|2 ≈ 0.2 (and the
probability of measuring |V 〉1 |V 〉2 coincidence is |b|2 ≈ 0.8), we have the state above
when the ratio of |H〉1 |H〉2 to |V 〉1 |V 〉2 coincidence is 1 : 4.

With both wave plates set to 0◦, tune the state so that the ratio of AB (|H〉 |H〉)
to A′B′ (|V 〉 |V 〉) coincidence is 1:4.38 We measure

H = P (β,−β)− P (−α, α)− P (β, α⊥)− P (−α⊥,−β) (3.10)

where α ≈ 34◦ and β ≈ 18◦.
The second step of our alignment is adjusting the phase of the state. Set the

wave plates so that P (−α, α) is being measured;39 we then adjust the angle of the
quartz plate to minimize this probability. We can now iterate through each proba-
bility we wish to measure, minimizing (for P (−α, α), P (β, α⊥), and P (−α⊥,−β)) or
maximizing (for P (β,−β)) appropriately. This can be done by slight adjustments of
measurement angle,40 or my adjusting the quartz plate or half-wave plate that affect
the pump beam. We are now ready to take data.

37At this point, we must use the Hardy VI, as it can measure the four coincidences we are
interested, unlike the other VIs which measure two or three coincidences.

38Of course, one can run the experiment in a symmetric system with the ratios 4:1 - I found the
1:4 state easier to work with due to asymmetry in my alignment

39That is to say, adjust the hash mark on the half wave plates to −α/2 and α/2, respectively.
40Note that the measurement angles are not independent. For example if we change α to minimize

P (−α, α), we must measure P (β, α⊥) with respect to the new α as well.
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Results

Data was taken using a 10 s integration time. 10 data points were taken for each
probability. Using the angles α = 34◦ and β = 18◦, we found

P(β,−β) = 0.158 ± 0.003

P(−α, α) = 0.019 ± 0.001

P(β, α⊥) = 0.030 ± 0.003

P(−α⊥,−β) = 0.046 ± 0.002

We calculated H by summing the probabilities (with appropriate negative signs)
element-by-element through the lists. This gives us ten values of H. We then di-
vide the standard deviation by

√
n, where n is the number of data points in the

distribution, to find the uncertainty:

Uncertainty(H) =
σH√
10
. (4.1)

This gives
H = 0.063 ± 0.001, (4.2)

violating the predictions of local realism by 63 uncertainties.1

4.1 Discussion

While progressing through the experiment, I noted a few areas in which the apparatus
for this experiment could have been improved to yield better data.

Alignment

In aligning the system prior to taking measurements, I encountered some difficulties.
Prior to my entry into the lab, there were three collimator-detectors on the table. I

1We have violated local realism by 15 standard deviations, which corresponds to 63 uncertainties
by Equation (4.1).
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built a fourth (the A′ detector), which involved assembling the collimator and coupling
it into the detector through a long-pass filter. After the filter was aligned, it was found
to be ∼ 25% more efficient than the other three detectors.

More generally, the alignment was of varying quality on each detector. Translation
stages on all four detectors would have been very helpful, because it would have
allowed for small horizontal adjustments without disturbing the overall alignment
of the system. Without these, however, I was unable to fine-tune my horizontal
position (key to detecting entanglement) without disturbing the overall alignment of
the system.

Newstep Motor Controller

Although I did modify the LabVIEW VI provided by Beck so that it would work with
the NewStep motor controller that we had, it was never fully functional. The data
taken was done manually, adjusting wave plates by hand and performing statistical
analysis in Mathematica. There were many issues with the controller, of which I will
list here the most notable.

1. Most problematically, the motors would often simply move to positions other
than those given in the commands sent to it. This seemed to be an issue with
the provided LabVIEW drivers.

2. Channel 2 of the NSC-SB was often problematic, and would not initialize or
shut down properly, leading to errors to the second waveplate.

3. When homing, the rotators would undergo a seemingly random number of ro-
tations before settling in the home position. This would sometimes last for a
dozen or more full rotations.

In personal correspondence, Beck insisted that none of these issues arose when one
used the GPIB switchbox; however, it was prohibitively expensive and, obviously, not
necessary to purchase one for this experiment. However, the manual data acquisition
prohibited the use of long integration times.2

Even with these issues, a clear violation of local realism is seen, a testament to the
simple and robust experimental design of Carlson et al. [2006].

2In Carlson et al. [2006], a 45 s integration time is used, which contributes greatly to the incredibly
low standard deviation of the data. When using a 20 s integration time, they find a 32 standard
deviation violation.



Chapter 5

Conclusion

We have shown a clear empirical violation of local realism. Performing such an
experiment in a modest undergraduate laboratory was significantly more difficult
and expensive until Mark Beck put forth the ingenious experimental designs that
allow this and other quantum mechanics experiments to be performed with relative
ease and low cost.

5.1 Future Experiments

We have not yet exhausted the possibilities of implementing Mark’s designs as Reed
theses. There are two experiments which would follow up on the apparatus and
techniques gained from Hardy’s test. I will now briefly describe these experiments.

5.1.1 Quantum Eraser with Polarization-Entangled Photons

This experiment is based on a subtle modification of the apparatus used in the single-
photon interference experiment. Beginning with the setup used in the Hardy exper-
iment, a polarization interferometer is inserted in the signal arm. Since the down-
conversion crystal is producing entangled photon pairs, measurement of the polar-
ization in one arm tells us about the polarization in the other arm. Using this fact,
we can erase “which-path” information for the signal arm by measuring the polar-
ization of the idler arm. The setup for this experiment is shown in Figure 5.1. This
experiment could be well implemented as a thesis.

5.1.2 Bell Inequalities Test using Polarization Entangled Pho-
tons

This experiment is based on the work of Dehlinger and Mitchell [2002], and uses the
same apparatus as that used in Hardy’s test. The quantity S is measured,1 and local
realism is violated for S ≥ 2. This experiment could easily be performed using the
Hardy apparatus; unfortunately, time constraints prevented me from doing so. This

1See Clauser et al. [1970].
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0.5-mm-thick BBO crystals, each cut for type-I downconver-
sion. They are stacked back-to-back, with their crystal axes
oriented at 90° with respect to each other !12,13". The first
crystal converts vertically polarized pump photons into hori-
zontally polarized signal and idler, while the second crystal
converts horizontally polarized pump photons into vertically
polarized signal and idler. The crystals are pumped using a
50-mW, 405-nm laser diode polarized at 45° in order to
pump both crystals. The half wave plate, ! /2, and the quartz
plate #QP$ in front of the downconversion crystals are used
to adjust the pump polarization, and the relative phase be-
tween the horizontal and vertical polarizations. The down-
converted light is collected by lenses and focused into mul-
timode fibers which are used to direct the light to single-
photon counting modules #SPCM’s$. The SPCM’s have
RG780 filters in front of them, which pass the downcon-
verted light but block scattered pump photons. Further de-
tails about our experimental apparatus can be found in Ref.
!14".
Our source produces photon pairs in the polarization en-

tangled state,

%"& =
1
'2 #%H,H& + %V,V&$ , #1$

where H refers to a horizontally polarized photon, and V
refers to a vertically polarized photon !12,13". Any given
photon has a 50/50 chance of being either horizontally or
vertically polarized. However, if one photon of a pair, for
example, the idler, is found to be horizontally polarized then
we know that the second #signal$ photon will also be hori-
zontally polarized. The correlations between the two beams
as expressed in the entangled state of Eq. #1$ are purely
quantum mechanical, and cannot be mimicked by any local
hidden variable theory #i.e., by any strictly classical theory$.
We have verified that our source produces true quantum cor-

relations by performing a test of a Bell inequality, and find-
ing a 30 standard deviation violation of local realism !12,13".
The polarization interferometer is shown in Fig. 2. A

beam displacing prism #BDP$ #simply a piece of birefringent
calcite$ splits the beam into vertically and horizontally polar-
ized components, with the horizontally polarized piece walk-
ing off. A half wave plate flips the polarizations, so that a
second BDP causes the two polarizations to walk back to-
gether. Upon exiting this BDP the beams are overlapped, but
do not yet interfere because they have orthogonal polariza-
tions. A second ! /2 plate rotates both polarizations by 45° so
that they interfere on the polarizing beamsplitter #PBS$. The
pathlength difference #relative phase$ between the two arms
is adjusted by rotating the second BDP.
As discussed in Sec. I, interference can only occur if the

signal photon takes both paths through the interferometer. If
this photon is known to take either one path or the other then
no interference will occur. Since the path of the signal pho-
ton is determined if its polarization is known to be either
horizontal or vertical, there will be no interference if it is
possible to determine that the signal photon is horizontally or
vertically polarized.
We illustrate this lack of interference in Fig. 3, where we

plot the measured number of coincidence counts between the
A and B detectors, NAB, as a function of the pathlength dif-
ference between the two arms of the interferometer. The ! /2
plate in the idler beam is oriented so that horizontally polar-
ized photons are detected at B, and vertically polarized pho-
tons are detected at B!. If a horizontally polarized idler pho-
ton is detected at B, for example, then the polarization
correlations inherent in the state %"& indicate that the signal
photon must be also be horizontally polarized. In this case
we know which path the signal photon took through the in-

FIG. 1. #Color online$ The experimental arrangement of a quan-
tum eraser with polarization entangled photons. Here ! /2 denotes a
half wave plate, QP denotes the quartz plate, DC denotes the down-
conversion crystals, PI denotes the polarization interferometer,
SPCM’s denotes the single-photon counting modules, and PBS de-
notes a polarizing beamsplitter.

FIG. 2. #Color online$ The polarization interferometer, with the
polarization of the individual beams labeled #! indicates vertical
polarization and ! indicates horizontal polarization$. Here BDP de-
notes a beam displacing prism.

FIG. 3. The measured number of coincidence counts NAB as a
function of the pathlength difference between the two arms of the
interferometer. Here the source is in an entangled state, and detector
B measures horizontally polarized idler photons.

GOGO, SNYDER, AND BECK PHYSICAL REVIEW A 71, 052103 #2005$
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Figure 5.1: Experimental apparatus for the Quantum Eraser experiment. Taken from
Gogo et al. [2005]

could even be implemented in the Advanced Laboratory course for juniors; with the
setup from this thesis present, there is little new alignment required.

Performing these experiments in an undergraduate laboratory is truly an invaluable
learning experience. Shedding light2 on the mysterious behavior of quantum parti-
cles through experimentation brings the message home to students that these are not
simply numbers on a chalkboard; they are empirically verifiable physical realities.
Also, performing these experiments is an incredible learning experience in optical
laboratory techniques for the undergraduate experimenter. It is my sincere hope that
more experiments like those presented here are undertaken by future Reed students
of physics.

2Via Power Technology, Inc. Laser Diode Control Unit Model #LDCU12/6931. Output wave-
length: 405nm. Max power: 50mW. Safety goggles must be worn at all times when the laser is
on.



Appendix A

Preliminary Experiments

During the first semester of this thesis project, I performed two preliminary experi-
ments, which helped develop the laboratory techniques necessary to successfully im-
plement Hardy’s Test. There are many subtleties to the experimental techniques used
here, and skillful application of these techniques is the difference between inconclusive
and significant data. These experiments were originally performed as thesis projects
by Vitullo [2007] and Suryawan [2009]. I will present here an extremely brief descrip-
tion of the two experiments; for a more thorough treatment, the reader is referred to
the respective theses (available in the Reed College Library).1

A.1 The Grangier Experiment

Experiment

In this experiment, we aim to verify the particle nature of light. In specific, we show
that a photon incident on a beamsplitter will be either transmitted or reflected, but
not both. Figure A.1 shows the experimental setup via which we measure this. We
use three detectors; a gate (G) detector in the idler beam, and transmitted (T) and
reflected (R) detectors in the signal beam. We only consider coincidences events
between two or more detectors; we measure GT, GR, and GTR coincidence. This
allows us to be sure that our measurements are made on photons from the signal beam
and not stray photons from the room or dark counts of the detectors. We define a
quantity called the second-order coherence as

g(2)(0) =
PGTR

PGT PGR
.2 (A.1)

Classical mechanics demands that g(2)(0) ≥ 1; however, there are certain quantum

1For the Grangier experiment, the reader may also see Thorn et al. [2004].
2The probabilities are calculated by

PGT =
NGT

NG
,

and similarly for PGR and PGTR.



38 Appendix A. Preliminary Experiments

The input is referred to as the pump !at angular frequency
"p), while the two outputs are referred to as the signal and
idler !at angular frequencies "s and " i). Energy conserva-
tion requires that

#"p!#"s"#" i, "p!"s"" i . !15$

Momentum conservation is equivalent to the classical phase-
matching condition, which requires that the wave vectors of
the input and output fields satisfy

k!p!k! s"k! i . !16$

The frequencies and wave vectors are not independent of
each other, and are related by the dispersion relation

kp!
np!"p$"p

c , !17$

where np("p) is the index of refraction of the pump wave at
the pump frequency, and similarly for the signal and idler
waves.
In Type-I downconversion, which is what we use in our

experiments, the signal and idler beams are polarized parallel
to each other, and their polarization is perpendicular to that
of the pump; all polarizations are linear. By proper orienta-
tion of the pump beam wave vector k!p with respect to the
optic axis of the crystal, it is possible to satisfy the con-
straints imposed in Eqs. !15$–!17$. Because only the relative
angle between the pump, signal, and idler are important, the
downconverted light is emitted into a cone surrounding the
pump beam !see, for example, Ref. 9$.
Typically, the frequencies of the signal and idler beam are

chosen to be equal to each other, at half the frequency !twice
the wavelength$ of the pump. In order to separate the signal
and idler, they are chosen to make a small angle !a few
degrees$ with the pump beam so that the signal comes out a
few degrees from the pump, and the idler comes out a few
degrees on the other side of the pump.
However, for a given crystal orientation, there is no unique

solution to the constraints imposed in Eqs. !15$–!17$. The
sums of the frequencies and wave vectors are constrained,
but not the individual frequencies and wave vectors. For in-
stance, if the signal frequency is less than half the pump
frequency by a certain amount, it is possible for energy to be
conserved %Eq. !15$&, if the idler frequency is an equal
amount greater than half the pump frequency. In order for
momentum to be conserved %Eq. !16$&, the signal makes a
slightly greater angle with respect to the pump, and the idler
makes a slightly smaller angle. Thus, the light coming out of
a downconversion crystal is emitted into a range of angles
!several degrees$, and wavelengths !on the order of 10s of
nm, centered about twice the pump wavelength$.
The similarity between the Ca cascade source used by

Grangier et al.11 and our downconversion source is that both
sources produce two photons, one of which is used as a gate.
In our experiment, we use the idler photons as a gate—the
detection of an idler photon in one beam !using detector G$
indicates that there is a signal photon present in the other.
The signal beam is directed to a beamsplitter with two de-
tectors at its outputs !detectors T and R$. Just as in the ex-
periment of Grangier et al., we expect to see an absence of
coincidences between the T and R detectors, conditioned on
a detection at G. This absence is equivalent to an absence of
threefold coincidences between G, T, and R. We can use Eq.

!14$ as a measure of the second-order coherence of the signal
beam, and a result of g (2)(0)#1 is inconsistent with a clas-
sical wave description of our system.

IV. EXPERIMENT

We now describe the major components for our updated
version of the experiment of Grangier et al. The layout of
these components is presented in Fig. 4. In brief, a beam of
ultraviolet laser light enters a nonlinear crystal where, via
spontaneous parametric downconversion, some of the light is
converted into IR light in two beams. Light from one of the
IR beams !the idler$ is used as a gating beam and passes
directly from the crystal into a photodetector. Light from the
other beam !the signal$, which we shall call the experiment
beam, is directed into a 50/50 BS and subsequently observed
by photodetectors placed in both the transmission and reflec-
tion ports of the beamsplitter. A photodetection in the gating
beam is used to signal that the experiment beam has been
prepared in the proper single-photon state, and it is the light
in the experiment beam whose second-order coherence is
measured. Detections from the three detectors G, T, and R
are registered by a series of time-to-amplitude converters and
single-channel analyzers; coincidence statistics are then com-
piled and analyzed.
For a more detailed discussion, it is convenient to group

components of the instrument into three categories: !i$ light
source, !ii$ light detection, and !iii$ coincidence-counting
electronics; there also are some diagnostic instruments that
make the experiments easier to perform. A list of major com-
ponents, manufacturers, and part numbers is provided in Ap-
pendix C; all of the equipment is commercially available and
relatively affordable; a complete parts list and further infor-
mation is available on our website.27

Fig. 4. Experimental apparatus. Major components include an ultraviolet
laser, downconversion crystal !DCC$, polarizing beamsplitter !PBS$, single-
photon counting modules !SPCMs$, and gating, transmission-side, and
reflection-side collection optics (G ,T ,R). Optical fibers direct the light from
G, T, and R to their corresponding SPCMs.

1214 1214Am. J. Phys., Vol. 72, No. 9, September 2004 Thorn et al.

Figure A.1: Diagram of the setup for the Grangier experiment, taken from Thorn
et al. [2004]. Note that we used a non-UV laser which operated at 405 nm.

states for which it is predicted that g(2)(0) < 1. For the single photon state, quantum
mechanics predicts that g(2)(0) = 0.3

This experiment familiarizes one with the detector and BBO crystal alignment.
A single BBO crystal is used to produce photon pairs. In order to acquire data, one
must also become familiar with the operation of coincidence electronics, including
setting the SCA window and considering TAC vs. SCA operation modes. One also
learns to use the alignment laser (not shown in Figure A.1) to align the collimators.

Results

We found g(2)(0) = 0.063 ± 0.008, which violates the classical inequality g(2)(0) ≥ 1
by over 110 standard deviations.

3Thorn et al. [2004]
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A.2 Single-Photon Interference

 

 

 
 

Fig 3.  The BDP’s.  The large black 
“knob” on the mount on the right is a 
stepper motor.  It allows the computer to 
tilt the mount to adjust the phase,  

SPCM’s 
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Fig. 2.  The experimental apparatus.  The 
polarization interferometer (PI) is in the 
dashed box. 

the power to the modules; it is OK for the power to be on, but the detectors themselves 
must be OFF. 

 In general, if the manual is not clear, or you're not completely sure how to do something, 
PLEASE ASK FOR HELP.  

 

I. Introduction 
 In the last lab, you showed that it was possible to create a beam of true single photons.  In 
this laboratory you will show that if individual photons are passed through an interferometer, 
they will interfere with themselves.  Indeed, it is possible to do both of these experiments at the 
same time.  You will thus be performing an experiment which simultaneously shows both the 
wave and particle aspects of light. 

 You'll be using the polarization interferometer we've talked about in class, and that you've 
worked with in HW and your Lab Ticket, Fig. 1.  Since you should be familiar with it, I won't 
describe how it works here.  A diagram of the complete experimental apparatus is shown in Fig. 
2, while a picture of the beam displacing prisms is shown in Fig. 3. 

 Remember, in the last lab we were able to show that the signal beam contained individual 
photons, as long as we gated everything off the detection of an idler photon.  This was done by 
looking for a lack of coincidences between two detectors monitoring the outputs of a 
beamsplitter.  In Fig. 2, we still have two detectors at the outputs of a beamsplitter, and a gate 
detector.  The only difference is that the beamsplitter is now part of the polarization 
interferometer. 

 As far is the output detectors are concerned, the PI is a beamsplitter; it takes one input beam 
and creates two output beams.  The splitting ratio of this "beamsplitter" depends on the phase of 

Lab 3 - 2 

Figure A.2: Diagram of the setup for Single-Photon Interference. Taken from Beck
[2008]

Experiment

In this experiment, a polarization interferometer is added in the signal arm of the
Grangier setup. Using the half-wave plates in the interferometer, we can create a
state in which it is impossible to know which path the photon takes through the
interferometer, i.e. both paths have a 50% probability. In this state, we say we have
erased “which-path” information. As we make minute changes in the length of one
arm of the interferometer, we expect to see a sinusoidal variation in the gated number
of counts NAB and NAB′ due to interference between the two arms of the interferom-
eter. When we have full “which-path” information, we expect to see no interference.
This verifies that a single photon will pass through both arms of the interferometer,
so long as we do not measure which arm it passes through. We also observe the
second-order coherence g(2)(0) to ensure that we remain as close as possible to the
ideal single-photon state.

This experiment gives further experience in alignment of optical elements. Ini-
tial alignment of the interferometer requires that all optical elements be normal to
the direction of beam propagation, which is ensured through careful observation of
the reflection of the alignment laser off of the incident surfaces of the various opti-
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cal elements.4 The adjustment of the length of one arm is done in LabVIEW via a
motor controller and a linear actuator connected to a kinetic mount.5 The experi-
menter is thus familiarized with the techniques necessary to successfully implement
this interface to achieve computer-controlled motors.6

Results

50 100 150 200
Relative Stepper Position

1000

1500

2000

2500

Coincidence Counts

Figure A.3: Results demonstrating single-photon interference. The light data is NAB′

and the dark data is NAB.

Figure A.3 shows the interference when the “which-path” is not available. The
visibility of the interference was VAB = 0.70 and VAB′ = 0.66.7 The second-order
coherence of this data is g(2)(0) = 0.05 ± 0.07. Although not shown, we observed no
interference8 when “which path” information was available.

4This technique is described in greater detail in §3.3.
5Motor controller: Newport NSC-SB. Actuator: Newport NSA-12. Kinetic mount: Newport

SN100-F2KN
6This basically amounts to a lot of rebooting of the controller, as well as using the software

bundled with the NSC-SB rather than LabVIEW itself to “home” the motors (i.e. return to the
zero setting).

7The visibility of an interference pattern I is defined as

VI =
max(I) − min(I)

max(I)

There is no interference when V = 0; perfect interference occurs when V = 1.
8Variations in counts were due to random noise; if one wished to calculate the visibility in this

case, it would be ∼ 5%.



Appendix B

Derivation of Bell’s Inequality

We will now present a brief derivation of Bell’s Inequality (see Bell [1964]). Although
not directly applicable to the experiment at hand, Bell’s paper was the inspiration for
myriad tests of local realism, and is cited in virtually all papers on the topic.1 This
section follows the exposition given in Griffiths [2005].

Suppose we observe the decay of a π0 particle into an positron and electron:

π0 −→ e+ + e− (B.1)

Since the net spin of the particle is zero before the decay, we know that the spin
of the positron will be perfectly anticorrelated with the spin of the electron, when
they are measured in the same basis. For simplicity, we measure the spin in units
of ~/2: we thus measure +1 for spin up and −1 for spin down. Now suppose we
measure the spin of the positron in the basis defined by the unit vector a, and the
spin of the electron in the basis defined by the unit vector b. We can then take
the average product of these spin measurements, which we will denote P (a,b), the
average product of spin measurements along a and b, for e+ and e− respectively. In
this notation, our statement of anticorrelation of spin becomes:

P (a, a) = −1 (B.2)

Equivalently, if measured along the opposite axes, the spins are perfectly correlated:

P (a,−a) = 1. (B.3)

Quantum mechanics predicts that, generally,2

P (a,b) = − a · b (B.4)

This result will be shown to be incompatible with any hidden variable theory. For
a hidden variable theory, the measurement of one particle does not affect the result

1Including, of course, Hardy [1993]
2This argument is taken from Wheeler [2009]. We choose our axes so that a lies along the z-axis

and b is in the x-z plane. Then S
(1)
a = S

(1)
z and S

(2)
b = cos θS(1)

z + sin θS(2)
x . We are to calculate
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of a measurement on the other; that is to say, the result of both measurements are
completely determined by the hidden variable (call it λ). We can thus construct
two functions of λ, one for the positron and one for the electron, which give us spin
measurement results independently:

A(a, λ) = ±1 B(b, λ) = ±1 (B.5)

Since our spins are anticorrelated, we know that

A(a, λ) = −B(a, λ) (B.6)

Hang on to your hats; we now dive into some mathematical manipulation in order to
arrive at a relation between the spin products P for three different combinations of
directions. If ρ(λ) is the normalized probability distribution of λ, then the average
spin measurement P (a,b) is given by

P (a,b) =

∫
ρ(λ) [A(a, λ)B(b, λ)] dλ (B.7)

In light of Equation (B.6), we can rewrite this all in terms of A:

P (a,b) = −
∫
ρ(λ) [A(a, λ)A(b, λ)] dλ (B.8)

Suppose that c is some third unit vector. Then

P (a,b)− P (a, c) = −
∫
ρ(λ) [A(a, λ)A(b, λ)− A(a, λ)A(c, λ)] dλ (B.9)

Given that A(b, λ)2 = 1, we can write

P (a,b)− P (a, c) = −
∫
ρ(λ) [1− A(b, λ)A(c, λ)]A(a, λ)A(b, λ)dλ. (B.10)

〈00|S(1)
a S

(2)
b |00〉. Neglecting factors of ~/2,

S(1)
a S

(2)
b |00〉 =

1√
2

{
S(1)

z (cos θS(2)
z + sin θS(2)

x )(↑↓ − ↓↑)
}

=
1√
2
{(Sz ↑)(cos θSz ↓ + sin θSx ↓)− (Sz ↓)(cos θSz ↑ + sin θSx ↑)}

=
1√
2
{↑ (cos θ(− ↓) + sin θ ↑ −(− ↓ (cos θ ↑ + sin θ ↓}

= cos θ
1√
2

(− ↑↓ + ↓↑) + sin θ
1√
2

(↑↑ + ↓↓)

= − cos θ |00〉+ sin θ (|11〉+ |1 − 1〉)

So

〈S(1)
a S

(2)
b 〉 = 〈00|S(1)

a S
(2)
b |00〉 = 〈00| {− cos θ |00〉+ sin θ (|11〉+ |1 − 1〉)}

= − cos θ 〈00| 00〉 by orthogonality
= − cos θ
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We now must note two facts about Equation (B.10). First, the product A(a, λ)A(b, λ)
is always between +1 and −1, which is to say

|A(a, λ)A(b, λ)| ≤ 1. (B.11)

Also, in light of the above, we know that

ρ(λ) [1− A(b, λ)A(c, λ)] ≥ 0, (B.12)

which puts us in a position to write

|P (a,b)− P (a, c)| ≤
∫
ρ(λ) [1− A(b, λ)A(c, λ)] dλ, (B.13)

which can be put more simply as

|P (a,b)− P (a, c)| ≤ 1 + P (b, c). (B.14)

Equation (B.14) is the famous inequality put forth by Bell in 1964. It is easily violated
by the quantum mechanical prediction of Equation (B.4). Suppose that we define our
three vectors in the usual cartesian form:

a = x̂ (B.15)

b = ŷ (B.16)

c =
1√
2

(x̂+ ŷ) . (B.17)

In this case, quantum mechanics says that

P (a,b) = 0, P (a, c) = P (b, c) = −0.707, (B.18)

which give us our contradiction,

0.707 6≤ 1− 0.707 = 0.293 (B.19)

The implications of Bell’s Theorem were not fully understood at first, but it would
ultimately open the door to empirical tests of local realism.
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