
Automated Genre Classification of Musical Signals

Peter Wills & Kathleen Finlinson

December 15, 2015

1 Introduction

Automating the process of categorization and classifi-
cation is fundamental to artificial intelligence and ma-
chine learning. Of particular interest are problems which
require distinctions and discernments made easily by
a human mind but which are challenging for a com-
puter. Speech recognition and natural language process-
ing stand as classic examples of problems involving ex-
tracting extremely abstract, high-level content from an
audio signal. A closely related problem is that of musi-
cal analysis. The human ear can often quite easily as-
sess qualities of a piece such as mood, intensity, genre,
instrumentation, etc, but it is quite difficult to train a
computer to reliably and accurately perform this type of
analysis.

The purpose of this project is to design an algorithm
which can discern the genre of a musical track. The
problem as we pose it is quite limited in scope. Our al-
gorithm chooses from a list of five possible genres: clas-
sical, electronic, jazz/blues, rock/pop, and metal/punk.
The basic approach used is that of statistical learning.
The severely restricted scope of this problem allows us to
explore different approaches given time constraints and
limited training data.

It is worth noting that the problem as originally posed
included a sixth genre, so-called “world” music. This
category is culturally troubling for a variety of reasons,
which we will not delve into here; however, it also poses
challenges to any algorithmic classifier. And this is to
be expected; world music is defined as the complement
of Western music, and therefore has no unifying acoustic
characteristics. World music can sound, to an untrained
ear, like anything from classical to folk to electronic to
jazz, depending on the culture out of which it arises. For
this reason, we exclude it from our analysis. The conse-
quence of this, obviously, is that no track will be cate-
gorized as “world” music. However, given that this is a
genre that is best discarded, we take this as a strength
rather than a weakness.

This report is structured as follows. First, we will
discuss methods for reducing the dimensionality of the
problem, which include randomized methods, network-
based approaches, and feature extraction. Then, we will
give a brief introduction to the two primary statistical
learning algorithms used, naive Bayes and support vec-

tor classification. We will report results for each method,
and conclude with a discussion of improvements and ex-
tensions toward a useful, robust classifier.

2 Preprocessing

The data as initially given to us is in the form of a .wav

file, a representation of the oscillations of the pressure
field in air which generates sound. This form, however,
does not map well to the human experience of sound. Hu-
mans hear sound in frequency space, essentially perform-
ing an internal Fourier transform and discerning the co-
efficients of different frequencies. Unlike a typical Fourier
transform, however, humans discern frequency on a loga-
rithmic scale: a musical octave is a doubling of frequency.
Thus we would hope to perform some kind of frequency
transform with logarithmic binning.

The mel-frquency cepstrum is a representation of a
signal in just this form. To implement the transform, we
take a Fourier transform of (a windowed segment of) the
signal, then convolve it with logarithmically spaces trian-
gular filters. We then perform a final cosine transform to
end up with a set of coefficients, called the mel-frequency
cepstrum coefficients (“MFCCs” hereafter). The details
of our implementation of this transform can be found in
Appendix A. We end up with a time series of roughly
1000 points in R30.

It is worth noting that this is not a necessary first
step. We will discuss some methods of feature extraction
which operate directly on the signal, or on the vanilla
Fourier transform of the signal, rather than the mel-
frequency cepstrum. However, we find the mel-frequency
cepstrum to be very useful, and it is our primary prepro-
cessing tool.

2.1 Normalization

It is worth noting that we have normalized the MFCCs
used by our classifier, meaning that we divide by the to-
tal l2 norm, taken by flattening the track to be a point
in R30,000. This introduces additional challenges, as the
norm of a track is in fact a good indicator of genre. In
particular, we observe that the norm (i.e. loudness) of
a track performs quite accurate binary classification be-
tween classical and all other genres. However, if we hope
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to eventually have tracks input via a microphone as is
often the case, the volume of the track will not correlate
to the volume of the recording. Thus this quantity will
be unreliable, and we must normalize. From here on, all
discussed approaches use the normalized MFCCs as their
foundation.

3 Dimensionality Reduction

Many emerging problems in modern data science involve
data points which live in an extremely high dimension.
This becomes problematic, as the geometric properties of
high-dimensional space often inhibits the efficacy of stan-
dard classification and regression algorithms. In math-
ematics this phenomenon is given the name “concentra-
tion of measure,” as is stated in a wonderfully succinct
way by Talagrand [1]:

A random variable which depends (in a
“smooth” way) upon many independent vari-
ables (but not too much on any of them) is
essentially constant.

The challenge is thus to move our data into a lower-
dimensional space without losing the structure essential
to effective categorization. We will explore three ap-
proaches to this problem. The first two, randomized pro-
jections and graph embedding, are chosen because they
are strongly emphasized in the curriculum of the course
and we hope to obtain some hands-on experience work-
ing with them. The third, loosely reffered to as “feature
extraction,” applies specifically to the problem of audio
content analysis.

3.1 Random Projections

Perhaps the most common method of dimensionality re-
duction, and often the one first learned, is principal com-
ponent analysis. This method is based on finding the
perpendicular axes of maximum variation of a dataset,
and is analogous to the principal axes theorem of me-
chanics. When used as a dimensionality reduction tool,
one projects down onto only the first few principal axes
of the dataset, hoping that the important structure is
preserved in the process. One drawback of this method
is that is requires the computation of the eigenvalues of
an N ×N matrix, where N is the dimensionality of the
space. This cost can be prohibitive when we are dealing
with spaces of extremely high dimension.

Suppose that, rather than attempt to intelligently se-
lect what axes we project onto, we were to choose from a
uniform distribution over the sphere in RN . This would
certainly reduce the dimension of our data, but we have
no reason to suspect it would maintain the structure we
seek to discern. However, the same concentration of mea-
sure which presents us with the challenge also provides
us with the solution. Indeed, this phenomenon is the

crux of the remarkable lemma of Johnson and Linden-
strauss, which (informally) states that randomized pro-
jections of n data points onto spaces of dimension Rm

with m = O(log(n)/ε2) will with high probability pre-
serve pairwise distances between points to within a factor
of 1− ε (see [2] for a precise statement). This approach
has been used with great success in scientific comput-
ing [3] (under the guise of randomized low-rank matrix
approximations) and in nearest-neighbor algorithms [4]
(there referred to as local-sensitive hashing).

Although the dimension of our data is not so high
as to be prohibitive for many of our statistical learning
schemes, we will implement randomized-projection based
methods and explore their efficacy.

3.2 Graph Construction

There are many different ways to discuss the distance
between two nodes on a graph, but no obvious way to
imbue the graph with an inner product structure. To
that end, we examine methods of embedding the graph
into Rn. Once this embedding has been performed, we
can take advantage of resulting structure in our classifi-
cation algorithms.

It is not obvious how this graphical embedding
method applies, since we do not in fact have a graph
to begin with. If we take each track and flatten the time
series of MFCCs, we have a collection of points in RN

where N ≈ 30, 000. We must begin by forming a graph
on which to perform this construction. We do this by us-
ing some notion of distance between points to establish
a measure of similarity, and then construct a graph with
edges weighted by this similarity.

We employ two notions of distance. The first is the
simple l2-distance between two points, taken in the usual
way. The second is a slightly more involved measure, the
symmetric Kullback-Leibler divergence, which is used to
measure the distance between probability distributions.

To calculate the symmetric KL-divergence, we regard
the time series as a point cloud in R30, disregarding tem-
poral information. We can then form the covariance ma-
trix and mean vector of this point cloud, and build a cor-
responding multivariate Gaussian distribution. We thus
have a Gaussian distribution corresponding to each track.
The KL-divergence between two multivariate Gaussians
is known in closed form.

We have two measures of distance between nodes on
a graph. We scale them so as to be comparable, then
take the minimum of the two. The resulting similarity
matrices are shown in Figure 1. We also apply a sharp
cutoff, so that if the similarity is below some value κ, we
set it to zero. In this situation, we applied a cutoff of
κ = 0.8. This cutoff is not shown Figure 1.

Once we have built a graph, we must embed it down
into Rm, hopefully for a reasonably small m. This is
enacted via the well-known spectral embedding method.
We will not go into detail of the method here, but the
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Figure 1: Similarity matrix used to construct graph. Final graph also applies a cutoff κ = 0.8 (not shown).

basic idea is that if the ith eigenvector of the scaled graph
Laplacian L is ϕ(i), then the embedding for node j is

j → (ϕ
(1)
j , ϕ

(2)
j , ...)

and the desired number of coefficients can be kept. Us-
ing only the second coefficient reproduces the common
method for performing two-community detection on the
graph.

3.3 Feature Extraction

Another common method for analyzing audio content
is to extract certain “features” from the signal. These
might include the l2 norm, autocorrelation, zero-crossing
rate, or envelope shape of the signal itself or the MFCCs.
Unfortunately, we do not delve into an examination of
these methods in this report. We found that a naive
application of statistical learning on features produced
results comparable to randomized projections of the
MFCCs. We are confident that an intelligent applica-
tion of feature-based classification is the approach which
would yield the most fruit, but it would take some sub-
stantial thinking and tinkering to get the right balance.
Due to time constraints, we exclude this method entirely
rather than present a half-hearted attempt.

4 Statistical Learning

4.1 Naive Bayes

The naive Bayes algorithm assumes the data is well-
described by a Gaussian mixture model. That is, it as-
sumes that each genre is represented by a multi-variate
Gaussian distribution in feature space. It also makes
the very strong assumption that the covariance of each
Gaussian distribution is diagonal, meaning that each fea-
ture is independent. This is what makes the algorithm
“naive”. However, naive Bayes often works remarkably
well in practice; and the independence assumption makes
the run-time very fast.

To build a classifier, we first look at a single dimension
in feature space. We assume each genre obeys a normal

distribution, so we only need to calculate a mean and
variance for each genre. This is shown in Figure 2. From
these distributions, we classify a query track as shown in
Figure 3. If x̂ is the value of the query track in the first
feature, we evaluate the probability that x̂ was drawn
from the distributions of each genre. We obtain a list of
numbers, the probability that the query track belongs to
each genre. To complete the classifier, we only need to
multiply these probabilities across each dimension, ac-
cording to the naive assumption of independence. We
simply choose the genre with the maximum probability.

Figure 2: This plot represents a single dimension of fea-
ture space. For each genre, we plot a histogram of the
values of that feature, across all the tracks in that genre.
We fit a bell curve to each histogram. Now each genre
has a univariate Gaussian distribution in this dimension.
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Figure 3: Calculating the likelihood that a query track
is from a given gaussian distribution.

4.1.1 Pros and Cons

We chose to try naive Bayes because it is well-known to
work very well in high dimensions. It avoids the curse of
dimensionality by assuming feature independence. Also,
we believed a Gaussian mixture model would aptly cap-
ture the genre classifications.

Of course, if feature dependencies are very impor-
tant for classification, naive Bayes will perform poorly.
Zhang explores this question in [5]. Zhang shows that
under mild assumptions, dependencies across many fea-
tures may “cancel out”, in such a way that they no longer
affect the dependencies. So we may expect naive Bayes
to perform well, despite existing dependencies.

4.2 Support Vector Machines

A support vector machine is a binary classification algo-
rithm. Given two sets of labeled points in some feature
space, the algorithm finds a hyperplane dividing the two
sets. In particular, it finds the unique hyperplane that
stays farthest away from the labeled points on either side.
This is known as the maximum-margin hyperplane. Here
we describe the mathematical formulation for finding this
hyperplane.

We describe the set of labeled points by a list of or-
dered pairs (xi, yi) where xi is the n-dimensional feature
vector for the ith point, and yi ∈ {1, −1} indicates which
class the point belongs to. The maximum-margin hyper-
plane can be found by minimizing

||w||
subect to yi(w · xi − b) ≥ 1 for each i (1)

where w is the (unnormalized) normal vector to the
hyperplane and b/||w|| is the distance between the hy-
perplane and the origin in the direction of w.

Figure 4: The maximum-margin hyperplane calculated
by a support vector classifier. (Courtesy of Wikipedia)

4.2.1 Kernel Trick

Suppose the points in the original space are not separa-
ble by a hyperplane, but rathers by a nonlinear curve.
We can transform this situation into a linear separation
problem by embedding the original points into a higher-
dimensional feature space with a nonlinear embedding.
The nonlinear embedding function is called the kernel.
If we choose the kernel function well, the points will
be linearly separable in the feature space. We find the
maximum-margin hyperplane in feature space, and then
project back down to the original space by inverting the
embedding. This gives us a nonlinear classifier in the
original space; an example is shown in Figure 5.

Figure 5: This nonlinear classifier is obtained from a
Gaussian kernel.

For this project, we’ve used a Gaussian radial ba-
sis kernel function. This means our feature space is
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an infinitely-dimensional Hilbert space. The infinite-
dimensional embedding ensures that the points are lin-
early separable in feature space; and fortunately our al-
gorithm still works, despite the high dimension.

A technique called the kernel trick actually allows us
to build the nonlinear classifier without performing the
full embedding described above. We just replace the dot
product from Equation 1 with a nonlinear kernel func-
tion. For a Gaussian kernel, the kernel function becomes
k(x, y) = exp(−γ||x − y||2) for γ > 0. We use the de-
fault γ from scikit-learn, which is 1/N where N is the
dimensionality of the data put into the algorithm.

4.2.2 Multi-class SVM

The SVM algorithm produces a binary classifier. In or-
der to handle multiple genres, we have to build multiple
binary SVM classifiers and combine them. We used one-
vs-one classification. For each pair of genres, we built
a single SVM classifier distinguishing between those two
genres.

5 Results

We now present the results of our methods. We report
both the total accuracy of classification and a representa-
tive confusion matrix. We believe that the total accuracy
is a better metric of performance, as it weighs more heav-
ily the better-represented genres. This is natural to do,
as we can only expect good performance on genres for
which there is a large amount of training data.

Our collection, after having removed all tracks labeled
with the “world” genre, contains 607 tracks. We perform
cross-validation on this collection. First, we separate the
tracks into 10 roughly equal sets. Then we classify the
first set, training on the remaining nine. We do the same
with the second set, and so on, until all tracks have been
tested. We then compute an accuracy measure by com-
paring the classified genre to the known actual genre. We
repeat this process 10 times in order to obtain a distribu-
tion of our accuracy measure. The data points and error
bars shown are, unless otherwise noted, the mean and
standard deviation of this set of 10 accuracy measures.

5.1 Random Projections

Figure 6: Performance of randomized projection meth-
ods.

The results for randomized projections are shown in
Figure 6. We observe that the performance of the naive
Bayes classifier surpasses that of the support vector clas-
sifier once the dimension is higher than 10. We have
no significant gains in accuracy when the dimension is
increased beyond 1000, and therefore the best method
seems to be to randomly project the data into R1000 and
apply a naive Bayes classifier.

Figure 7: Confusion matrix using naive Bayes classifier
on the MFCCs, randomly projected into R1000

A representative confusion matrix is shown in Fig-
ure 7. The most problematic genre is jazz, which is not
surprising, given the low quantity of training data and
high acoustic variability of the genre. We see two groups
emerge: one is classical and jazz/blues, while the other
is electronic, metal/punk, and rock/pop.
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5.2 Graph Embedding

Figure 8: Performance of graph embedding methods.

We now look at the results of the graphical embed-
ding method, shown in Figure 8. We see that, unlike ran-
domized projections, there is a steep decrease in quality
of classification when we embed into Rm for m > 10 or
so. This is to be expected, as there is a natural ordering
present here; the initial dimensions are useful for classify-
ing graphs with a low number of communities, while the
higher dimensions classify graphs with many communi-
ties. Since our graph does not have more than 5 apparent
communities (indeed, only two are readily apparent from
Figure 1) these higher dimensions are effectively noise,
and strongly decrease the efficacy of our method.

Figure 9: Confusion matrix using naive Bayes classifier
on the spectral embedding, keeping 100 coefficients.

A representative confusion matrix is shown in Fig-
ure 9. The method performs quite well on classical, but is
lackluster in the areas of jazz/blues and rock/pop. This
is again not unexpected, but a discussion of why this oc-
curs (beyond a lack of training data) is beyond the scope
of this work.

6 Improvements & Extensions

The methods employed here are not expected to be op-
timal, for various reasons. This project is intended as
an exploration of dimensionality reduction techniques as

taught in the course. These methods show some effec-
tiveness, but we do not expect them to excel when the
problem is extended to a realistic scale.

The methods that we expect would be most effec-
tive will be dimensionality reduction techniques specific
to audio analysis, that is to say audio feature extrac-
tion. One would want to incorporate low-level features,
such as autocorrelation and zero-crossing rate, as well as
high-level features, such as tonic frequency, tempo, time
signature, instrumentation, etc. These would have to be
handled in an intelligent way, with different weights ap-
plied in the classifier algorithm. One must also carefully
consider how we order such quantities. For example, A[

is musically much closer to E[ than it is to A\, and in the
case of tonic frequency a circle-of-fifths ordering would
likely be the appropriate one. When it comes to time
signatures the issue becomes even stickier: is 4/4 time
closer to 3/4 or 6/8? In this scenario we may have to
consider the features as unordered discrete variables.

Effective classification is dependent upon a reason-
able genre taxonomy. However, there is no consensus in
the musical community about such a taxonomy. [6] One
must define genres that are acoustically meaningful; any
genre without defining acoustic properties will not be dis-
cerned by a classifier that looks at the audio signal alone.
This is the reason we have discarded the “world” genre
from our examination; were we to delve into a larger and
more complicated taxonomy of genres, we would need to
make many more such decisions.

An effective classifier would also require a training
set that is orders of magnitude larger than the one used
here. Obtaining such a set is difficult given copyright
laws. Often internet radio platforms provide the genre
of a track, and a program could be written that trains
off of signals obtained from such services. However, the
legality of this would become highly dubious were this to
become a commercial product.

7 Conclusion

We have studied the application of dimensionality reduc-
tion techniques to the problem of automated genre clas-
sification. We find that one can reduce the dimension
of the audio signal (MFCCS) by 97% using randomized
projections and still retain > 98% performance when us-
ing a Gaussian naive Bayes classifier. We find support
vector classifiers to have similar but slightly less desir-
able performance. Methods based on graph embeddings
are significantly less effective, due to the simplicity of our
graph construction.
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Appendix

A Computational Details

Here we will outline the process used to compute the
MFCCs of a given track. We begin by trimming a track
to 2 minutes using the following algorithm.

if length(track)*(2/3) > 2 min

grab middle 2 min of track

else

grab middle 2/3rds of track

loop until length is > 2 min

truncate to 2 min

end

This removes any introduction or conclusion portion of
the song, which is often a poor indicator of genre. We
then use the features module in python [7] to compute
the MFCCs of a given track, using a window length of .2
seconds, window overlap of .1 seconds, and 30 frequency
bins. This yields a matrix which is 1199× 26.

All statistical learning algorithms are implemented
using the scikit-learn module in python [8]. Naive
Bayes is performed using the default gaussian kernel.

The support vector machine classifier is implemented by
first scaling all data using the included preprocessing

module.

B Test Data Results

We report the results for the test data provided recently.
We used our naive Bayes classifier with 1000 dimensions.
We obtain an accuracy of 56.8%. The confusion matrix
is shown in Figure 10.

Figure 10: Confusion matrix using naive Bayes classifier
on the test data.
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